AI-based leukemia detection in routine diagnostic blood smear data
Develop LeukoScreen, an AI software to enhance the speed and accuracy of acute promyelocytic leukemia diagnosis, improving patient outcomes and optimizing laboratory workflows.
Projectdetails
Introduction
Acute promyelocytic leukemia is an extremely aggressive blood cancer where immediate diagnosis can determine life or death. The diagnostic state of the art is manual inspection of a patient’s blood smear under the microscope by trained cytologists.
Challenges in Current Diagnosis
This process is prone to human error and is time-consuming, which is a significant risk factor in notoriously understaffed laboratories. Supporting clinical decisions with AI will drastically increase diagnostic speed and accuracy, benefit patient survival, and free up valuable expert time.
Market Potential
This is particularly important for cytological and histological analysis, whose market size is expected to rise by a compounded annual growth rate of 14.7% in the coming years. Yet, so far, the proof of concept that AI can be effectively employed for leukemia detection in routine diagnostics is missing.
Project Overview
I will leverage the methodological advancements in deep learning and explainable AI, the skills of my ERC CoG funded research group, and the expertise and data of the Munich Leukemia Laboratory (MLL), the largest leukemia laboratory in Europe and my long-standing industry partner.
Development of LeukoScreen
Together, we will develop and implement LeukoScreen, an AI-based software to automatically identify and flag acute leukemia cases from MLL’s routine laboratory input. This will decrease the diagnosis to treatment time of critical leukemia cases at reduced costs and staffing.
Specific Objectives
Specifically, we will:
- Deploy a real-world dataset from the routine input of the MLL.
- Train and evaluate our algorithm for transparent decision making on routine diagnostic blood smears.
- Quantify the gain in sensitivity, specificity, and speed by comparing LeukoScreen with the currently used manual workflow at MLL.
- Jointly develop a commercialization strategy for the exploitation of results.
Conclusion
This AI approach to support disease detection will save patients’ lives, change the paradigm of cytologic workflows, and create capacities in overburdened diagnostics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBHpenvoerder
- MLLI GMBH
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Trustworthy AI tools for personalized oncologyThe project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice. | ERC Consolid... | € 1.999.225 | 2023 | Details |
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapyThis project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance. | ERC Starting... | € 1.882.440 | 2024 | Details |
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Understanding Diagnosing and Early intervention in the Myeloid malignancy ContinuumThe Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Interpretable Artificial Intelligence across Scales for Next-Generation Cancer PrognosticsThis project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability. | ERC Starting... | € 1.494.810 | 2022 | Details |
Trustworthy AI tools for personalized oncology
The project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice.
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapy
This project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance.
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’
FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets.
Understanding Diagnosing and Early intervention in the Myeloid malignancy Continuum
The Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies.
Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics
This project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancerQlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe. | EIC Accelerator | € 2.491.650 | 2024 | Details |
DETACT - Detection of Enzymes and muTAtions for Cancer TreatmentCytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen. | Mkb-innovati... | € 215.845 | 2019 | Details |
Multidisciplinaire prognostische melanoomtestHet project van MLA Diagnostics en Ellogon.AI ontwikkelt een AI-gebaseerde diagnostische test voor melanomen om betere behandelkeuzes en patiëntselectie voor immunotherapie te realiseren. | Mkb-innovati... | € 299.950 | 2023 | Details |
Lymfoomdiagnostiek op cytologisch materiaalHet project ontwikkelt een voorspellende marker voor maligne lymfomen om gerichte behandelingen te bieden, met als doel patiënten verlichting, remissie of genezing te bieden. | Mkb-innovati... | € 189.437 | 2015 | Details |
Data Driven Leukemia DetectionHet project Bahov ontwikkelt een AI-gestuurde bio-informatica oplossing om vroegtijdige herkenning van leukemie bij patiënten te verbeteren, ter ondersteuning van de gezondheidszorg. | Mkb-innovati... | € 20.000 | 2021 | Details |
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancer
Qlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe.
DETACT - Detection of Enzymes and muTAtions for Cancer Treatment
Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.
Multidisciplinaire prognostische melanoomtest
Het project van MLA Diagnostics en Ellogon.AI ontwikkelt een AI-gebaseerde diagnostische test voor melanomen om betere behandelkeuzes en patiëntselectie voor immunotherapie te realiseren.
Lymfoomdiagnostiek op cytologisch materiaal
Het project ontwikkelt een voorspellende marker voor maligne lymfomen om gerichte behandelingen te bieden, met als doel patiënten verlichting, remissie of genezing te bieden.
Data Driven Leukemia Detection
Het project Bahov ontwikkelt een AI-gestuurde bio-informatica oplossing om vroegtijdige herkenning van leukemie bij patiënten te verbeteren, ter ondersteuning van de gezondheidszorg.