Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics
This project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability.
Projectdetails
Introduction
Computation pathology has the potential to revolutionize cancer care and research, specifically through improving assessment of patient prognosis and treatment selection by applying advanced machine learning methods to digitized tissue sections, i.e. whole-slide images (WSIs). This will allow us to replace the current state-of-the-art of human-developed cancer grading systems.
Current Challenges
However, the field is currently hindered by significant knowledge gaps:
- We do not know how to effectively leverage both global and local information in WSIs.
- We do not know how to identify pan-cancer prognostic features.
- We do not know how to make machine learning models explainable and interpretable.
Project Objectives
In this project, I will address these key knowledge gaps by building on the novel stochastic streaming gradient descent developed in my group.
Methodology
Specifically, I will:
- Integrate innovative multi-task and cross-task learning algorithms with SSGD.
- Leverage the latest advances in self-supervision, self-attention, and natural language processing to endow deep neural networks with unprecedented transparency and explainability.
Validation and Impact
Last, the project will validate our developed methodology in the largest dataset of oncological WSIs in the world, and, for the first time, identify links between morphological prognostic features and genetic features.
Scientific Contribution
By publicly releasing all developed tools and data, the proposed project will have a scientific multiplier effect for the fields of oncology, computational pathology, and machine learning.
Applications
Specifically, the derived cancer-specific and pan-cancer biomarkers can be leveraged in clinical care and cancer research. The enhanced SSGD method for other tasks in computational pathology and our novel multi-task and explainability algorithms can impact other research areas in machine learning, such as remote sensing and self-driving cars.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.494.810 |
Totale projectbegroting | € 1.494.810 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New directions for deep learning in cancer research through concept explainability and virtual experimentation.NADIR aims to enhance deep learning in cancer research by integrating biological knowledge to extract concepts and verify mechanisms, focusing on tumor-immune interactions in colorectal and gastric cancer. | ERC Starting... | € 1.498.750 | 2024 | Details |
AI-based leukemia detection in routine diagnostic blood smear dataDevelop LeukoScreen, an AI software to enhance the speed and accuracy of acute promyelocytic leukemia diagnosis, improving patient outcomes and optimizing laboratory workflows. | ERC Proof of... | € 150.000 | 2023 | Details |
Trustworthy AI tools for personalized oncologyThe project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice. | ERC Consolid... | € 1.999.225 | 2023 | Details |
Integrated Mechanistic Modelling and Analysis of Large-scale Biomedical DataINTEGRATE aims to enhance cancer treatment by developing advanced computational models that integrate patient-derived data for improved drug targeting and clinical trial planning. | ERC Consolid... | € 1.854.546 | 2024 | Details |
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets. | ERC Consolid... | € 2.000.000 | 2024 | Details |
New directions for deep learning in cancer research through concept explainability and virtual experimentation.
NADIR aims to enhance deep learning in cancer research by integrating biological knowledge to extract concepts and verify mechanisms, focusing on tumor-immune interactions in colorectal and gastric cancer.
AI-based leukemia detection in routine diagnostic blood smear data
Develop LeukoScreen, an AI software to enhance the speed and accuracy of acute promyelocytic leukemia diagnosis, improving patient outcomes and optimizing laboratory workflows.
Trustworthy AI tools for personalized oncology
The project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice.
Integrated Mechanistic Modelling and Analysis of Large-scale Biomedical Data
INTEGRATE aims to enhance cancer treatment by developing advanced computational models that integrate patient-derived data for improved drug targeting and clinical trial planning.
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’
FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Het gebruik van Machinaal leren om het leven van kankerpatiënten te bevorderenHet project onderzoekt de haalbaarheid van een webapplicatie die met machinaal leren een effectief revalidatieplan voor kankerpatiënten ontwikkelt, ter verbetering van hun herstel. | Mkb-innovati... | € 20.000 | 2020 | Details |
Enabling the transition to 3D digital pathology3DPATH aims to develop a clinically viable 3D tissue scanner using advanced light-sheet fluorescence microscopy to enhance histopathology accuracy and improve patient care globally. | EIC Transition | € 2.493.683 | 2025 | Details |
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentieDit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren. | Mkb-innovati... | € 200.000 | 2018 | Details |
DETACT - Detection of Enzymes and muTAtions for Cancer TreatmentCytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen. | Mkb-innovati... | € 215.845 | 2019 | Details |
Het gebruik van Machinaal leren om het leven van kankerpatiënten te bevorderen
Het project onderzoekt de haalbaarheid van een webapplicatie die met machinaal leren een effectief revalidatieplan voor kankerpatiënten ontwikkelt, ter verbetering van hun herstel.
Enabling the transition to 3D digital pathology
3DPATH aims to develop a clinically viable 3D tissue scanner using advanced light-sheet fluorescence microscopy to enhance histopathology accuracy and improve patient care globally.
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentie
Dit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren.
DETACT - Detection of Enzymes and muTAtions for Cancer Treatment
Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.