Discovering novel control strategies for turbulent wings through deep reinforcement learning

DEEPCONTROL aims to enhance aviation sustainability by using deep reinforcement learning and high-fidelity simulations for real-time flow control around wings, reducing fuel consumption and emissions.

Subsidie
€ 1.999.748
2022

Projectdetails

Introduction

Over the past decades, aviation has become an essential component of today's globalized world. Before the current pandemic of coronavirus disease 2019 (COVID-19), over 100,000 flights took off every day worldwide. A number of studies indicate that after the pandemic, its relevance in the transportation mix will be similar to that before COVID-19.

Environmental Impact

Aviation alone is responsible for 12% of the carbon dioxide emissions from the whole transportation sector and for 3% of the total CO2 emissions in the world. Due to the major environmental and economic impacts associated with aviation, there is a pressing need for improving the aerodynamic performance of airplane wings to reduce fuel consumption and emissions.

Need for Improvement

This implies reducing the force parallel to the incoming flow, i.e., the drag. One of the strategies to achieve such a reduction is to perform flow control.

Project Overview

DEEPCONTROL aims at using high-fidelity simulations and deep reinforcement learning to develop a framework for real-time prediction and control of the flow around wing sections and three-dimensional wings based only on sparse measurements.

Methodology

  1. High-Order Simulations: We will first perform high-order spectral-element simulations of wing sections and three-dimensional wings at high Reynolds numbers.
  2. Velocity Reconstruction: Using sparse measurements at the wall, we will reconstruct the velocity fluctuations above the wall within a region of interest. To this end, we will employ:
    • A generative adversarial network (GAN)
    • A fully-convolutional network (FCN)
    • Modal decomposition
  3. Flow Control: Then, we will perform flow control based on deep reinforcement learning (DRL), which will enable discovering novel solutions in terms of flow actuation and design of winglet geometry.

Experimental Validation

In order to assess the robustness of the framework for real-time applications, we will carry out detailed wind-tunnel experiments at KTH.

Conclusion

This framework will constitute a breakthrough in aviation sustainability and will enable developing more efficient aeronautical solutions worldwide.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.748
Totale projectbegroting€ 1.999.748

Tijdlijn

Startdatum1-4-2022
Einddatum31-3-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • KUNGLIGA TEKNISKA HOEGSKOLANpenvoerder
  • OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
  • UNIVERSITE DE POITIERS

Land(en)

SwedenFrance

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Metamaterials for Laminar Flow Control on a Wing

MetaWing aims to develop metamaterials to control wave-like instabilities in laminar flows, reducing aircraft drag and emissions by delaying the transition to turbulence.

€ 2.374.014
ERC Consolid...

MOdeling and Reduction of Aeroacoustics Sources of Interaction Noise in Aviation

The project aims to develop a holistic acoustic model for predicting interaction noise in aviation by understanding flow distortion, ultimately enabling the design of quieter, zero-emission aircraft.

€ 1.988.158
ERC Proof of...

The Delft Laminar Hump: A novel local surface geometry for passive laminarization of aircraft wings

The Delft Laminar Hump project aims to develop a cost-effective, passive wing modification to enhance laminar flow, reducing aircraft drag and emissions, and facilitating industrial adoption.

€ 150.000
ERC Starting...

Koopman-Operator-based Reinforcement Learning Control of Partial Differential Equations

This project aims to enhance reinforcement learning for large-scale engineering systems by developing performance-guaranteed controllers, addressing safety in energy-efficient technologies.

€ 1.499.000
ERC Starting...

Control of Extreme Events in Turbulent Flows with Scientific Machine Learning

The CONTEXT project aims to develop a machine learning framework to identify, forecast, and control extreme events in turbulent flows, enhancing prediction and prevention across diverse systems.

€ 1.499.068

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Bioinspired Electroactive Aeronautical multiscale LIVE-skin

The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.

€ 2.495.445
Mkb-innovati...

Onderzoek AI gedreven automatiseren van luchtvaartprocessen

Dit project ontwikkelt een innovatieve communicatietechnologie voor luchtvaartmaatschappijen om vertragingen efficiënt te beheren, wachtrijen te verminderen en papiergebruik te minimaliseren.

€ 20.000
Mkb-innovati...

Pelican

Het project "Pelican" ontwikkelt een webgebaseerde softwaretool om belanghebbenden te ondersteunen bij het verkennen van windondersteunde voortstuwing voor schepen, met focus op simulatie en ontwerpimpact.

€ 20.000
Mkb-innovati...

Dig-AI-Wind

Econowind BV, In2e Engineering BV en Made Smart Group BV ontwikkelen een geïntegreerd AI-systeem voor optimale scheepsbesturing en routeplanning, gericht op Smart Shipping en duurzaamheid.

€ 193.830
Mkb-innovati...

Air Foil

Het project onderzoekt de haalbaarheid van een innovatieve verticale holle vleugel voor windenergie, gericht op efficiëntie, kostenbesparing en duurzame energieoplossingen.

€ 20.000