Medical Image Analysis with Normative Machine Learning
Develop a machine learning framework for medical imaging that enables robust confirmation of normality and enhances early disease detection without manual labeling.
Projectdetails
Introduction
As one of the most important aspects of diagnosis, treatment planning, treatment delivery, and follow-up, medical imaging provides an unmatched ability to identify disease with high accuracy. As a result of its success, referrals for imaging examinations have increased significantly.
Challenges in Medical Imaging
However, medical imaging depends on interpretation by highly specialised clinical experts and is thus rarely available at the front-line-of-care, for patient triage, or for frequent follow-ups. Very often, excluding certain conditions or confirming physiological normality would be essential at many stages of the patient journey, to streamline referrals and relieve pressure on human experts who have limited capacity.
Hence, there is a strong need for increased imaging with automated diagnostic support for clinicians, healthcare professionals, and caregivers.
Machine Learning in Diagnostics
Machine learning is expected to be an algorithmic panacea for diagnostic automation. However, despite significant advances such as Deep Learning with notable impact on real-world applications, robust confirmation of normality is still an unsolved problem, which cannot be addressed with established approaches.
Proposed Solution
Like clinical experts, machines should also be able to verify the absence of pathology by contrasting new images with their knowledge about healthy anatomy and expected physiological variability.
Aim of the Proposal
Thus, the aim of this proposal is to develop normative representation learning as a new machine learning paradigm for medical imaging, providing patient-specific computational tools for:
- Robust confirmation of normality
- Image quality control
- Health screening
- Prevention of disease before onset
We will do this by developing novel Deep Learning approaches that can learn without manual labels from healthy patient data only, applicable to cross-sectional, sequential, and multi-modal data. Resulting models will be able to extract clinically useful and actionable information as early and frequent as possible during patient journeys.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.997.841 |
Totale projectbegroting | € 1.997.841 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A Data-driven Approach to Microstructural ImagingADAMI aims to revolutionize tissue microstructure imaging by using a data-driven MRI approach, enhancing disease detection and monitoring through reliable, in vivo insights into cellular composition. | ERC Consolid... | € 1.999.706 | 2024 | Details |
Reconciling Classical and Modern (Deep) Machine Learning for Real-World ApplicationsAPHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration. | ERC Consolid... | € 1.999.375 | 2023 | Details |
Inclusive Artificial Intelligence for Accessible Medical Imaging Across Resource-Limited SettingsAIMIX aims to develop inclusive imaging AI for resource-limited settings, enabling affordable, scalable, and accessible ultrasound screening to reduce global health disparities. | ERC Consolid... | € 2.206.963 | 2023 | Details |
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Interpretable Artificial Intelligence across Scales for Next-Generation Cancer PrognosticsThis project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability. | ERC Starting... | € 1.494.810 | 2022 | Details |
A Data-driven Approach to Microstructural Imaging
ADAMI aims to revolutionize tissue microstructure imaging by using a data-driven MRI approach, enhancing disease detection and monitoring through reliable, in vivo insights into cellular composition.
Reconciling Classical and Modern (Deep) Machine Learning for Real-World Applications
APHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration.
Inclusive Artificial Intelligence for Accessible Medical Imaging Across Resource-Limited Settings
AIMIX aims to develop inclusive imaging AI for resource-limited settings, enabling affordable, scalable, and accessible ultrasound screening to reduce global health disparities.
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’
FoundationDX aims to enhance molecular diagnostics by using self-supervised learning on diverse biomolecular data to accurately predict cancer subtypes and treatment outcomes without extensive labeled datasets.
Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics
This project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheidsproject Beter beeld voor een betere diagnoseHet project onderzoekt de toepassing van geavanceerde beeldverwerking in medische technieken om diagnoses te verbeteren en stralingsblootstelling voor patiënten te verminderen. | Mkb-innovati... | € 14.400 | 2021 | Details |
Kwaliteitsmanagementsysteem voor medische beeldanalyse modellenMIAS onderzoekt de haalbaarheid van een platform voor medische beeldanalyse dat deep learning modellen in de klinische praktijk implementeert en kwaliteitsmanagementsystemen ontwikkelt voor zorgprofessionals. | Mkb-innovati... | € 20.000 | 2021 | Details |
Het gebruik van Machinaal leren om het leven van kankerpatiënten te bevorderenHet project onderzoekt de haalbaarheid van een webapplicatie die met machinaal leren een effectief revalidatieplan voor kankerpatiënten ontwikkelt, ter verbetering van hun herstel. | Mkb-innovati... | € 20.000 | 2020 | Details |
Doorbreken van barrières voor gebruik van AI algoritmes in de gezondheidszorg.Het project ontwikkelt een cloud-based platform met AI-technologie voor verbeterde medische diagnostiek, gericht op snellere, nauwkeurigere behandelingen en kostenbesparingen in de gezondheidszorg. | Mkb-innovati... | € 329.700 | 2019 | Details |
Haalbaarheidsproject Beter beeld voor een betere diagnose
Het project onderzoekt de toepassing van geavanceerde beeldverwerking in medische technieken om diagnoses te verbeteren en stralingsblootstelling voor patiënten te verminderen.
Kwaliteitsmanagementsysteem voor medische beeldanalyse modellen
MIAS onderzoekt de haalbaarheid van een platform voor medische beeldanalyse dat deep learning modellen in de klinische praktijk implementeert en kwaliteitsmanagementsystemen ontwikkelt voor zorgprofessionals.
Het gebruik van Machinaal leren om het leven van kankerpatiënten te bevorderen
Het project onderzoekt de haalbaarheid van een webapplicatie die met machinaal leren een effectief revalidatieplan voor kankerpatiënten ontwikkelt, ter verbetering van hun herstel.
Doorbreken van barrières voor gebruik van AI algoritmes in de gezondheidszorg.
Het project ontwikkelt een cloud-based platform met AI-technologie voor verbeterde medische diagnostiek, gericht op snellere, nauwkeurigere behandelingen en kostenbesparingen in de gezondheidszorg.