Inclusive Artificial Intelligence for Accessible Medical Imaging Across Resource-Limited Settings
AIMIX aims to develop inclusive imaging AI for resource-limited settings, enabling affordable, scalable, and accessible ultrasound screening to reduce global health disparities.
Projectdetails
Introduction
Artificial intelligence (AI) is widely regarded as one of the most promising and disruptive technologies for future healthcare. As AI algorithms such as deep neural networks are suited for the processing of large and complex datasets, radiology is the medical specialty that has seen some of the most important applications of AI in recent years.
Current Limitations
However, despite these advances, a major limitation of current AI developments in medical imaging is that they have overwhelmingly, and almost entirely, targeted applications in high-income countries. There is a concern that if the current trend continues, AI will increase the already pronounced inequalities in global health, particularly for resource-limited settings such as rural Africa, where the majority of the African population lives.
Project Overview
AIMIX will develop the first scientific framework for inclusive imaging AI in resource-limited settings. The project will greatly advance the current state-of-the-art, moving from existing AI methods mostly developed for high-income settings towards new imaging AI algorithms that are fundamentally inclusive. These algorithms will be:
- Affordable for resource-limited clinical centers.
- Scalable to under-represented population groups.
- Accessible to minimally trained clinical workers.
Socio-Ethical Investigation
Furthermore, AIMIX will investigate the socio-ethical principles and requirements that govern inclusive AI. The project will examine how these principles compare, conflict, or complement those of trustworthy AI developed thus far in high-income settings.
Practical Application
These innovations will be demonstrated for affordable and accessible AI-powered obstetric ultrasound screening by minimally trained clinicians such as midwives in rural Africa.
Expected Impact
Ultimately, AIMIX’s scientific breakthroughs will enhance the democratization of imaging AI in resource-limited settings. This will result in an important social impact by empowering local communities, promoting inclusion, and reducing disparities between populations from low- and high-income societies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.206.963 |
Totale projectbegroting | € 2.206.963 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAT DE BARCELONApenvoerder
- AGA KHAN UNIVERSITY KENYA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Screening And Future Enhanced MRISAFE-MRI seeks to enhance breast cancer detection and MRI performance by implementing abbreviated screening for younger women and reducing contrast use through advanced imaging techniques. | ERC Consolid... | € 2.984.796 | 2023 | Details |
Medical Image Analysis with Normative Machine LearningDevelop a machine learning framework for medical imaging that enables robust confirmation of normality and enhances early disease detection without manual labeling. | ERC Consolid... | € 1.997.841 | 2023 | Details |
Trustworthy AI tools for personalized oncologyThe project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice. | ERC Consolid... | € 1.999.225 | 2023 | Details |
The first AI-guided toxicity atlas for safer and more effective abdominal radiation therapyThe AIDose project aims to create a 3D toxicity risk atlas for thoracic and abdominal organs using AI to enhance radiotherapy planning and reduce treatment-related toxicities in cancer patients. | ERC Consolid... | € 1.999.972 | 2025 | Details |
Human collaboration with AI agents in national health governance: organizational circumstances under which data analysts and medical experts follow or deviate from AI.This project aims to explore the socio-cultural dynamics of AI in health governance across six countries to develop a theory on ethical AI intervention and its impact on national health policies. | ERC Starting... | € 1.499.961 | 2023 | Details |
Screening And Future Enhanced MRI
SAFE-MRI seeks to enhance breast cancer detection and MRI performance by implementing abbreviated screening for younger women and reducing contrast use through advanced imaging techniques.
Medical Image Analysis with Normative Machine Learning
Develop a machine learning framework for medical imaging that enables robust confirmation of normality and enhances early disease detection without manual labeling.
Trustworthy AI tools for personalized oncology
The project aims to develop trustworthy AI tools for personalized oncology to enhance diagnosis, outcome prediction, and treatment recommendations, ensuring reliability and transparency in clinical practice.
The first AI-guided toxicity atlas for safer and more effective abdominal radiation therapy
The AIDose project aims to create a 3D toxicity risk atlas for thoracic and abdominal organs using AI to enhance radiotherapy planning and reduce treatment-related toxicities in cancer patients.
Human collaboration with AI agents in national health governance: organizational circumstances under which data analysts and medical experts follow or deviate from AI.
This project aims to explore the socio-cultural dynamics of AI in health governance across six countries to develop a theory on ethical AI intervention and its impact on national health policies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Doorbreken van barrières voor gebruik van AI algoritmes in de gezondheidszorg.Het project ontwikkelt een cloud-based platform met AI-technologie voor verbeterde medische diagnostiek, gericht op snellere, nauwkeurigere behandelingen en kostenbesparingen in de gezondheidszorg. | Mkb-innovati... | € 329.700 | 2019 | Details |
Cloud-IA: Een Cloud-based platformCloud-IA ontwikkelt een cloudplatform voor de integratie van AI-gedreven medische beeldverwerkingssoftware in ziekenhuizen, met als doel de diagnostische efficiëntie en kosteneffectiviteit te verbeteren. | Mkb-innovati... | € 326.297 | 2018 | Details |
AI-based clinical software for fully automated Cardiac Magnetic Resonance reportingAI4MedImaging is developing AI4CMR.Plus, a revolutionary software for automated cardiac assessment via CMR, aiming for a 2025 launch to enhance CVD diagnosis and improve patient outcomes. | EIC Accelerator | € 1.753.842 | 2022 | Details |
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared careI(eye)-Screen aims to develop an AI-based system for early detection and monitoring of age-related macular degeneration, enhancing accessibility and health equity in vision care. | EIC Pathfinder | € 3.454.613 | 2024 | Details |
Med.aiHet Med.ai project ontwikkelt een slimme hoofdcamera voor de medische sector om de kwaliteit en toegankelijkheid van chirurgische zorg te verbeteren met AI-technologie. | Mkb-innovati... | € 200.000 | 2021 | Details |
Doorbreken van barrières voor gebruik van AI algoritmes in de gezondheidszorg.
Het project ontwikkelt een cloud-based platform met AI-technologie voor verbeterde medische diagnostiek, gericht op snellere, nauwkeurigere behandelingen en kostenbesparingen in de gezondheidszorg.
Cloud-IA: Een Cloud-based platform
Cloud-IA ontwikkelt een cloudplatform voor de integratie van AI-gedreven medische beeldverwerkingssoftware in ziekenhuizen, met als doel de diagnostische efficiëntie en kosteneffectiviteit te verbeteren.
AI-based clinical software for fully automated Cardiac Magnetic Resonance reporting
AI4MedImaging is developing AI4CMR.Plus, a revolutionary software for automated cardiac assessment via CMR, aiming for a 2025 launch to enhance CVD diagnosis and improve patient outcomes.
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-Screen aims to develop an AI-based system for early detection and monitoring of age-related macular degeneration, enhancing accessibility and health equity in vision care.
Med.ai
Het Med.ai project ontwikkelt een slimme hoofdcamera voor de medische sector om de kwaliteit en toegankelijkheid van chirurgische zorg te verbeteren met AI-technologie.