Learning to synthesize interactive 3D models
This project aims to automate the generation of interactive 3D models using deep learning to enhance virtual environments and applications in animation, robotics, and digital entertainment.
Projectdetails
Introduction
Visualizing our surroundings and imagination has been an integral part of human history. In today's era, we have the privilege to immerse ourselves in 3D digital environments and interact with virtual objects and characters.
Challenges in 3D Model Creation
However, creating digital representations of environments (i.e., 3D models) often requires an excessive amount of manual effort and time, even for trained 3D artists. Over the recent years, there have been remarkable advances in deep learning methods that attempt to reconstruct 3D models from real-world data captured in images or scans.
Despite these advances, we are still far from automatically producing 3D models usable in interactive 3D environments and simulations. The resulting reconstructed 3D models lack controllers and metadata related to their articulation structure, possible motions, and interaction with other objects or agents.
Importance of Automation
Automating the synthesis of interactive 3D models is crucial for several applications, such as:
- Virtual and mixed reality environments where objects and characters are not static, but instead move and interact with each other.
- Automating animation pipelines.
- Training robots for object interaction in simulated environments.
- 3D printing of functional objects.
- Digital entertainment.
Project Goals
In this project, we will answer the question: "How can we automate the generation of interactive 3D models of objects and characters?" Our project will include the following thrusts:
- We will design deep architectures that automatically infer motion controllers and interaction-related metadata for input 3D models, effectively making them interactive.
- We will develop learning methods that replace dynamic real-world objects and characters captured in scans and video with high-quality, interactive, and animated 3D models as digital representatives.
- We will develop generative models that synthesize interactive 3D objects and characters automatically, and further help reconstruct them from scans and video more faithfully.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- POLYTECHNEIO KRITISpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Learning to Create Virtual WorldsThis project aims to develop advanced machine learning techniques for automatic generation of high-fidelity 3D content, enhancing immersive experiences across various applications. | ERC Consolid... | € 2.750.000 | 2025 | Details |
Learning Digital Humans in MotionThe project aims to enhance immersive telepresence by using natural language to reconstruct and animate photo-realistic digital humans for interactive communication in AR and VR environments. | ERC Starting... | € 1.500.000 | 2025 | Details |
Exploration of Unknown Environments for Digital TwinsThe 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods. | ERC Advanced... | € 2.476.718 | 2023 | Details |
SpatioTemporal Reconstruction of Interacting People for pErceiving SystemsThe project aims to develop robust methods for inferring Human-Object Interactions from natural images/videos, enhancing intelligent systems to assist people in task completion. | ERC Starting... | € 1.500.000 | 2025 | Details |
Federated foundational models for embodied perceptionThe FRONTIER project aims to develop foundational models for embodied perception by integrating neural networks with physical simulations, enhancing learning efficiency and collaboration across intelligent systems. | ERC Advanced... | € 2.499.825 | 2024 | Details |
Learning to Create Virtual Worlds
This project aims to develop advanced machine learning techniques for automatic generation of high-fidelity 3D content, enhancing immersive experiences across various applications.
Learning Digital Humans in Motion
The project aims to enhance immersive telepresence by using natural language to reconstruct and animate photo-realistic digital humans for interactive communication in AR and VR environments.
Exploration of Unknown Environments for Digital Twins
The 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods.
SpatioTemporal Reconstruction of Interacting People for pErceiving Systems
The project aims to develop robust methods for inferring Human-Object Interactions from natural images/videos, enhancing intelligent systems to assist people in task completion.
Federated foundational models for embodied perception
The FRONTIER project aims to develop foundational models for embodied perception by integrating neural networks with physical simulations, enhancing learning efficiency and collaboration across intelligent systems.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Synthetische Data GeneratorHet project ontwikkelt een automatische data generator voor synthetische data om AI-modellen in de agrarische en industriële sector te trainen, met als doel de efficiëntie en nauwkeurigheid te verbeteren. | Mkb-innovati... | € 176.050 | 2023 | Details |
3D Foodmodellen met Generatieve AIDit project ontwikkelt generatieve AI-technologie voor het creëren van hoogwaardige 3D-modellen van voedsel, om innovaties in de agro- en foodsector te versnellen en de voedseltransitie te ondersteunen. | Mkb-innovati... | € 183.810 | 2023 | Details |
Synthetische Data GeneratorHet project ontwikkelt een automatische synthetische data generator voor het trainen van AI-modellen in de agrarische en industriële sector. | Mkb-innovati... | € 176.050 | 2023 | Details |
Samenwerken in een full immersive VR-omgevingVier innovatieve organisaties uit Zuid-Nederland ontwikkelen een multiplayer virtual reality systeem met natuurlijke interactie om toepassingen in diverse sectoren te verbeteren. | Mkb-innovati... | € 197.860 | 2016 | Details |
Blended Learning for DementiaTinqwise en TMVRS ontwikkelen een innovatief blended learning platform voor mentale gezondheidszorg, gericht op sociale cognitieve vaardigheden via interactieve VR-ervaringen met realistische gezichtsanimaties. | Mkb-innovati... | € 185.360 | 2016 | Details |
Synthetische Data Generator
Het project ontwikkelt een automatische data generator voor synthetische data om AI-modellen in de agrarische en industriële sector te trainen, met als doel de efficiëntie en nauwkeurigheid te verbeteren.
3D Foodmodellen met Generatieve AI
Dit project ontwikkelt generatieve AI-technologie voor het creëren van hoogwaardige 3D-modellen van voedsel, om innovaties in de agro- en foodsector te versnellen en de voedseltransitie te ondersteunen.
Synthetische Data Generator
Het project ontwikkelt een automatische synthetische data generator voor het trainen van AI-modellen in de agrarische en industriële sector.
Samenwerken in een full immersive VR-omgeving
Vier innovatieve organisaties uit Zuid-Nederland ontwikkelen een multiplayer virtual reality systeem met natuurlijke interactie om toepassingen in diverse sectoren te verbeteren.
Blended Learning for Dementia
Tinqwise en TMVRS ontwikkelen een innovatief blended learning platform voor mentale gezondheidszorg, gericht op sociale cognitieve vaardigheden via interactieve VR-ervaringen met realistische gezichtsanimaties.