Exploration of Unknown Environments for Digital Twins
The 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods.
Projectdetails
Introduction
In the 'explorer' project, we will develop methods for automatically capturing and labelling video data in "open worlds". The ultimate goal is the great facilitation of the creation and maintenance of Digital Twins. Digital Twins are virtual 3D copies of complex scenes such as cities, factories, or construction sites.
Objectives
Not just a 3D reconstruction, Digital Twins should capture the scene's semantics, i.e. the identity of each object, and the scene's dynamics, i.e. how objects move. Because Digital Twins have the potential to be extremely useful for monitoring large complex sites and planning the development of these sites, their forecast market is huge. However, they remain mostly a concept because of important limitations of the current technology.
Methodology
Our methods will guide autonomous systems such as robotic platforms and UAVs through complex and unknown environments to capture visual data for creating and maintaining Digital Twins. This is extremely challenging as these systems will encounter objects without any prior knowledge about them and will have to collect sufficient data about them.
Problem Statement
To the best of our knowledge, this active and automatic capture in complex real environments is a new problem. It is, however, very important to solve it as this will relax the need for human expertise and time. Currently, capturing such data is done manually only by researchers and requires a strong understanding of what the learning algorithms require.
Approach
To tackle the complexity of this problem, our approach is inspired by techniques from Artificial Intelligence applied to the exploration of extremely large trees. This approach will allow us to bring the perception part and the planning part of the problem together under the same optimization framework, to formalize it and solve it efficiently.
Evaluation
To evaluate our developments, we will create a dataset of annotated video sequences from working sites, which we will share with the community.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.476.718 |
Totale projectbegroting | € 2.476.718 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- ECOLE NATIONALE DES PONTS ET CHAUSSEESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Learning to synthesize interactive 3D modelsThis project aims to automate the generation of interactive 3D models using deep learning to enhance virtual environments and applications in animation, robotics, and digital entertainment. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Digital Forest Twins for AI-based Wildfire AssessmentThis project aims to develop a digital twin for wildfires, combining 3D modeling and AI tools to enhance firefighting strategies and accelerate wildfire research through realistic simulations. | ERC Consolid... | € 1.986.200 | 2025 | Details |
Omni-Supervised Learning for Dynamic Scene UnderstandingThis project aims to enhance dynamic scene understanding in autonomous vehicles by developing innovative machine learning models and methods for open-world object recognition from unlabeled video data. | ERC Starting... | € 1.500.000 | 2023 | Details |
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learningThe Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits. | ERC Starting... | € 1.500.000 | 2025 | Details |
Digital twins for understanding forest disturbances and recovery from spaceThis project aims to enhance understanding and monitoring of forest disturbances and recovery using advanced 3D models and satellite data across diverse ecosystems, improving carbon stock forecasting. | ERC Starting... | € 1.498.859 | 2022 | Details |
Learning to synthesize interactive 3D models
This project aims to automate the generation of interactive 3D models using deep learning to enhance virtual environments and applications in animation, robotics, and digital entertainment.
Digital Forest Twins for AI-based Wildfire Assessment
This project aims to develop a digital twin for wildfires, combining 3D modeling and AI tools to enhance firefighting strategies and accelerate wildfire research through realistic simulations.
Omni-Supervised Learning for Dynamic Scene Understanding
This project aims to enhance dynamic scene understanding in autonomous vehicles by developing innovative machine learning models and methods for open-world object recognition from unlabeled video data.
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learning
The Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits.
Digital twins for understanding forest disturbances and recovery from space
This project aims to enhance understanding and monitoring of forest disturbances and recovery using advanced 3D models and satellite data across diverse ecosystems, improving carbon stock forecasting.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
InContract AIHet project onderzoekt de technische en commerciële mogelijkheden van digital twins voor het automatiseren van contractprocessen in de tool InContract, met inzet van AI en deep learning. | Mkb-innovati... | € 20.000 | 2023 | Details |
InContract AIHet project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool. | Mkb-innovati... | € 20.000 | 2023 | Details |
Ontwikkeling AI gebaseerd locatie dataplatformOntwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel. | Mkb-innovati... | € 199.000 | 2022 | Details |
Haalbaarheidsonderzoek naar participatie door efficiënte Digital Twins.Het project onderzoekt de haalbaarheid van een innovatief digital twin-systeem voor burgerparticipatie, met als doel besluitvorming te verbeteren en commerciële toepassing te ontwikkelen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Synthetische Data GeneratorHet project ontwikkelt een automatische data generator voor synthetische data om AI-modellen in de agrarische en industriële sector te trainen, met als doel de efficiëntie en nauwkeurigheid te verbeteren. | Mkb-innovati... | € 176.050 | 2023 | Details |
InContract AI
Het project onderzoekt de technische en commerciële mogelijkheden van digital twins voor het automatiseren van contractprocessen in de tool InContract, met inzet van AI en deep learning.
InContract AI
Het project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool.
Ontwikkeling AI gebaseerd locatie dataplatform
Ontwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel.
Haalbaarheidsonderzoek naar participatie door efficiënte Digital Twins.
Het project onderzoekt de haalbaarheid van een innovatief digital twin-systeem voor burgerparticipatie, met als doel besluitvorming te verbeteren en commerciële toepassing te ontwikkelen.
Synthetische Data Generator
Het project ontwikkelt een automatische data generator voor synthetische data om AI-modellen in de agrarische en industriële sector te trainen, met als doel de efficiëntie en nauwkeurigheid te verbeteren.