Laminated Perovskite Photovoltaics: Enabling large area processing of durable and high efficiency perovskite semiconductor thin films.
LAMI-PERO aims to enhance the efficiency and stability of perovskite photovoltaics through a novel lamination process, paving the way for scalable, high-quality solar cell production.
Projectdetails
Introduction
Photovoltaic technologies are cornerstones of all future scenarios for sustainable energy supply. Enhancing the efficiency and reducing the costs of photovoltaics is a challenge of utmost urgency and importance to the research field of materials engineering and science.
Current Challenges
To date, hybrid organic–inorganic lead halide perovskite semiconductors denote the most promising material class for future low-cost and high-efficiency next-generation photovoltaics. Major hurdles that hinder the economic breakthrough are:
- The low stability of perovskite materials
- The large-area fabrication of high-quality perovskite thin films
Project Overview
In response, LAMI-PERO will break new ground by researching and developing a novel lamination process that is designed to enable:
- The processing of unexplored perovskite semiconductors and heterostructures
- More durable thin film morphologies
- Novel high-efficiency device architectures
My team and I were among the first to report preliminary data on this lamination process. It combines two half-stacks in a high-pressure step and allows crystallizing the pre-deposited precursor materials into a high-quality perovskite thin film.
Advantages of the Lamination Process
Thereby, the lamination disentangles critical constraints of established sequential layer deposition.
Research Goals
To reach its ambitious goals, LAMI-PERO will:
- Close the knowledge gap about the underlying physics of the perovskite film formation during the lamination process using innovative in-situ characterization
- Explore more stable thin film morphologies and novel perovskite semiconductors
- Fabricate more durable and high-efficiency perovskite solar cells and perovskite-based tandem solar cells
- Demonstrate the scalability of the lamination process in view of future commercialization
Conclusion
To date, the lamination of perovskite thin films is largely unexplored, and the proposed research implies high risks but bears the enormous potential of paving the way for a breakthrough regarding the longevity and scalability of perovskite photovoltaics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.349.755 |
Totale projectbegroting | € 2.349.755 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- KARLSRUHER INSTITUT FUER TECHNOLOGIEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Dry-processing of metal halide perovskites into thin filmsThe APERITIF project aims to develop a novel solvent-free deposition process for high-quality perovskite films to enhance photovoltaic efficiency and attract industrial partnerships for large-scale production. | ERC Proof of... | € 150.000 | 2023 | Details |
Engineering metal halide PEROvskites by VAPour depositionThe PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices. | ERC Consolid... | € 1.999.843 | 2024 | Details |
Perovskite triple and quadruple junction solar cellsThe project aims to develop triple and quadruple junction perovskite solar cells with 35-40% efficiency by innovating materials and architectures to minimize energy losses. | ERC Advanced... | € 2.999.926 | 2024 | Details |
Sputtering Halide Perovskites for Integration in Monolithic Tandem Solar CellsSPRINT aims to develop a scalable sputtering deposition process for perovskite-silicon tandem solar cells to achieve over 30% efficiency and accelerate market readiness. | ERC Proof of... | € 150.000 | 2023 | Details |
Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronicsELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices. | ERC Consolid... | € 1.991.250 | 2025 | Details |
Dry-processing of metal halide perovskites into thin films
The APERITIF project aims to develop a novel solvent-free deposition process for high-quality perovskite films to enhance photovoltaic efficiency and attract industrial partnerships for large-scale production.
Engineering metal halide PEROvskites by VAPour deposition
The PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices.
Perovskite triple and quadruple junction solar cells
The project aims to develop triple and quadruple junction perovskite solar cells with 35-40% efficiency by innovating materials and architectures to minimize energy losses.
Sputtering Halide Perovskites for Integration in Monolithic Tandem Solar Cells
SPRINT aims to develop a scalable sputtering deposition process for perovskite-silicon tandem solar cells to achieve over 30% efficiency and accelerate market readiness.
Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronics
ELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell ApplicationsSOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence. | EIC Pathfinder | € 2.930.127 | 2022 | Details |
Unprecedented photolithographic structuring of novel light-sensitive poly(amino acid) materials– a paradigm shift in delivering biocompatible devicesPOLINA aims to revolutionize bioprinting and medical devices by combining innovative light-sensitive materials with advanced photolithography for improved tissue compatibility and drug discovery. | EIC Pathfinder | € 2.882.322 | 2024 | Details |
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions. | EIC Pathfinder | € 3.229.932 | 2022 | Details |
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERSSUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices. | EIC Pathfinder | € 3.600.937 | 2024 | Details |
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell Applications
SOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence.
Unprecedented photolithographic structuring of novel light-sensitive poly(amino acid) materials– a paradigm shift in delivering biocompatible devices
POLINA aims to revolutionize bioprinting and medical devices by combining innovative light-sensitive materials with advanced photolithography for improved tissue compatibility and drug discovery.
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2
OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERS
SUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices.