Unprecedented photolithographic structuring of novel light-sensitive poly(amino acid) materials– a paradigm shift in delivering biocompatible devices
POLINA aims to revolutionize bioprinting and medical devices by combining innovative light-sensitive materials with advanced photolithography for improved tissue compatibility and drug discovery.
Projectdetails
Introduction
Photolitography, which produces geometrical structures through light-induced polymerisation of monomers with high accuracy, precision and spatial resolution, was a key innovation enabler in the drive for high-performance miniature electronics. This innovation has had an unprecedented impact on every aspect of our modern life.
Impact on Medical Devices
Geometrically well-defined microstructures could also be a game changer in the medical device industry, especially in the development of implantable devices with better tissue compatibility. Additionally, these structures could play a significant role in the discovery of new drugs and treatments.
Current Limitations
Current gold standard materials and biomaterial extrusion processing cannot generate the structural resolution needed to kick-start this new era.
The POLINA Approach
The groundbreaking approach of POLINA is to combine a radically new, light-sensitive poly(amino acid) material platform with established and emerging photolithographic patterning techniques. This combination aims to deliver a revolutionary technology that can be exploited for:
- Medical devices
- Next-generation green electronics
Exploring this uncharted territory will be possible through an ambitious multidisciplinary approach that delivers breakthroughs in photopolymerisation of amino acids and their lithographic structuring for novel materials with unique biological properties.
Demonstration of Innovation Potential
The high innovation potential of this technology to overcome current limitations will be demonstrated in three selected examples related to lung diseases:
- Micropatterned cell surface models
- Spheroid arrays for lung disease modelling and drug testing
- Tracheal implants
Intersectoral Collaboration
Our intersectoral team of 5 academic groups and 2 SMEs brings together unique scientific expertise in:
- Photo and polymer chemistry
- Biomaterials science
- Lithographic processing
- Tissue engineering
- Clinical expertise
- Innovation management
Through POLINA, we will pave the way to revolutionise bioprinting, leading to safer, smarter, and more affordable medical devices and, in the long term, a new approach in (bio)electronics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.882.322 |
Totale projectbegroting | € 2.882.322 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ROYAL COLLEGE OF SURGEONS IN IRELANDpenvoerder
- 4DCELL
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
- UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
- RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
- BASQUE CENTER FOR MACROMOLECULAR DESIGN AND ENGINEERING POLYMAT FUNDAZIOA
- ACCELOPMENT SCHWEIZ AG
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Personalised Adaptive MedicineThe PERAMEDIC project aims to develop a desktop-sized system for personalized polypill formulation using 3D printing and precise dosing to enhance treatment outcomes and patient adherence. | EIC Pathfinder | € 1.726.876 | 2024 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
Protein-based next generation electronicsPRINGLE aims to harness a newly discovered bacteria's conductive protein fibers to create sustainable, biodegradable electronic devices, paving the way for a bio-based electronics revolution. | EIC Pathfinder | € 3.267.127 | 2022 | Details |
PRInted Symbiotic Materials as a dynamic platform for Living Tissues productionPRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications. | EIC Pathfinder | € 2.805.403 | 2022 | Details |
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc CircuitsICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety. | EIC Pathfinder | € 2.664.940 | 2024 | Details |
Personalised Adaptive Medicine
The PERAMEDIC project aims to develop a desktop-sized system for personalized polypill formulation using 3D printing and precise dosing to enhance treatment outcomes and patient adherence.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
Protein-based next generation electronics
PRINGLE aims to harness a newly discovered bacteria's conductive protein fibers to create sustainable, biodegradable electronic devices, paving the way for a bio-based electronics revolution.
PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits
ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Moleculaire printer voor biomedische applicatiesDe R&D samenwerking van drie MKB’ers richt zich op het verlagen van de kosten en verhogen van de functionaliteit van POC-diagnostiek door innovatieve coating en microplasma technologieën te integreren. | Mkb-innovati... | € 194.994 | 2016 | Details |
Bioinspired composite architectures for responsive 4 dimensional photonicsBIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications. | ERC Starting... | € 1.498.579 | 2023 | Details |
Microfabricatie van 3D structuren voor biomedische toepassingenPhotosynthetic ontwikkelt een revolutionaire 3D-printtechnologie die micro- en nanostructuren 50 keer sneller en preciezer produceert, gericht op toepassingen in de biomedische markt. | Mkb-innovati... | € 20.000 | 2023 | Details |
Innovatieve lithografische techniek voor 3D microfabricatiePhotosynthetic B.V. ontwikkelt een innovatieve 3D-printtechniek voor micro-/nano-structuren die tot 50 keer sneller en goedkoper is dan bestaande methoden, met brede toepassingsmogelijkheden. | Mkb-innovati... | € 20.000 | 2022 | Details |
Better Bioprinting by Light-sheet LithographyB-BRIGHTER aims to develop a novel high-speed bioprinting technology for creating complex engineered tissues, enhancing drug testing and therapeutic applications while fostering healthcare innovation. | EIC Transition | € 2.093.331 | 2022 | Details |
Moleculaire printer voor biomedische applicaties
De R&D samenwerking van drie MKB’ers richt zich op het verlagen van de kosten en verhogen van de functionaliteit van POC-diagnostiek door innovatieve coating en microplasma technologieën te integreren.
Bioinspired composite architectures for responsive 4 dimensional photonics
BIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications.
Microfabricatie van 3D structuren voor biomedische toepassingen
Photosynthetic ontwikkelt een revolutionaire 3D-printtechnologie die micro- en nanostructuren 50 keer sneller en preciezer produceert, gericht op toepassingen in de biomedische markt.
Innovatieve lithografische techniek voor 3D microfabricatie
Photosynthetic B.V. ontwikkelt een innovatieve 3D-printtechniek voor micro-/nano-structuren die tot 50 keer sneller en goedkoper is dan bestaande methoden, met brede toepassingsmogelijkheden.
Better Bioprinting by Light-sheet Lithography
B-BRIGHTER aims to develop a novel high-speed bioprinting technology for creating complex engineered tissues, enhancing drug testing and therapeutic applications while fostering healthcare innovation.