Sputtering Halide Perovskites for Integration in Monolithic Tandem Solar Cells
SPRINT aims to develop a scalable sputtering deposition process for perovskite-silicon tandem solar cells to achieve over 30% efficiency and accelerate market readiness.
Projectdetails
Introduction
Perovskite-silicon tandem solar cells are one of the most promising new technologies in solar energy research, due to their high efficiencies and use of low-cost materials. One attractive way to make these tandems is to grow the wide band gap perovskite on textured silicon solar cells, forming a monolithic tandem.
Current Status
Record efficiencies of 31.25% have been reported for these monolithic tandems, but still on relatively small area devices (1 cm²). To bring this technology closer to the market, it is imperative to start focusing on scalability.
Scalability Challenges
Specifically, the perovskite top cell needs to be reliably produced with industrially validated, scalable deposition methods. This deposition method should also allow:
- High deposition rates
- Direct integration of the perovskite top cell into textured silicon cells
Project Overview
SPRINT will develop sputtering deposition of these perovskites. Sputtering is a highly industrialized physical vapor deposition (PVD) method that tackles all challenges: high deposition rate, conformal deposition, and scalability. However, to date, it hasn’t been explored for halide perovskites.
Goals and Innovations
SPRINT's goal is to use the knowledge generated in my ERC StG CREATE for halide target fabrication (patent filed) and single target PVD deposition, and apply this to develop a sputtering coating process for inorganic wide band gap perovskites for monolithic integration in tandem devices.
Market Impact
SPRINT will bring an innovative solution to key stakeholders in the PV market. Specifically:
- PV module manufacturers (such as Oxford PV and Meyer Burger) could implement the process into existing sputtering systems in their R&D labs and later into production lines.
- Vacuum equipment manufacturers (such as Von Ardenne and Demcon TSST) will benefit from the demand for deposition equipment.
This will allow fast-tracking a new generation of PV to the market with > 30% efficiency at a lower price point, strengthening the European PV market.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 30-11-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Dry-processing of metal halide perovskites into thin filmsThe APERITIF project aims to develop a novel solvent-free deposition process for high-quality perovskite films to enhance photovoltaic efficiency and attract industrial partnerships for large-scale production. | ERC Proof of... | € 150.000 | 2023 | Details |
Engineering metal halide PEROvskites by VAPour depositionThe PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices. | ERC Consolid... | € 1.999.843 | 2024 | Details |
Laminated Perovskite Photovoltaics: Enabling large area processing of durable and high efficiency perovskite semiconductor thin films.LAMI-PERO aims to enhance the efficiency and stability of perovskite photovoltaics through a novel lamination process, paving the way for scalable, high-quality solar cell production. | ERC Consolid... | € 2.349.755 | 2023 | Details |
Perovskite triple and quadruple junction solar cellsThe project aims to develop triple and quadruple junction perovskite solar cells with 35-40% efficiency by innovating materials and architectures to minimize energy losses. | ERC Advanced... | € 2.999.926 | 2024 | Details |
Ultra-efficient and stable perovskite tandem solar cells for extreme conditions in spaceINPERSPACE aims to develop ultra-efficient all-perovskite tandem solar cells for space applications by addressing stability under extreme conditions, revolutionizing the space PV market. | ERC Starting... | € 2.500.000 | 2024 | Details |
Dry-processing of metal halide perovskites into thin films
The APERITIF project aims to develop a novel solvent-free deposition process for high-quality perovskite films to enhance photovoltaic efficiency and attract industrial partnerships for large-scale production.
Engineering metal halide PEROvskites by VAPour deposition
The PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices.
Laminated Perovskite Photovoltaics: Enabling large area processing of durable and high efficiency perovskite semiconductor thin films.
LAMI-PERO aims to enhance the efficiency and stability of perovskite photovoltaics through a novel lamination process, paving the way for scalable, high-quality solar cell production.
Perovskite triple and quadruple junction solar cells
The project aims to develop triple and quadruple junction perovskite solar cells with 35-40% efficiency by innovating materials and architectures to minimize energy losses.
Ultra-efficient and stable perovskite tandem solar cells for extreme conditions in space
INPERSPACE aims to develop ultra-efficient all-perovskite tandem solar cells for space applications by addressing stability under extreme conditions, revolutionizing the space PV market.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell ApplicationsSOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence. | EIC Pathfinder | € 2.930.127 | 2022 | Details |
Industrial Selective PLAting for Solar HeterojunctionThe iSPLASH project aims to revolutionize HJT cell metallisation by using cost-effective copper deposition technology, reducing costs by 90% and eliminating silver to lower carbon emissions. | EIC Accelerator | € 2.449.440 | 2022 | Details |
Fine Line Dispensing Process to apply Narrow Metal Contacts onto Solar CellsHighLine Technology GmbH aims to revolutionize solar cell metallization by reducing silver usage by 25%, enhancing efficiency by 1%, and increasing throughput for PERC and HJT cells. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions. | EIC Pathfinder | € 3.229.932 | 2022 | Details |
FLEXIBLE LIGHTWEIGHT MULTI-JUNCTION SOLAR CELLS AND MODULES WITH ENHANCED PERFORMANCE FOR EFFICIENT LIGHT HARVESTING IN OUTER SPACEJUMP INTO SPACE aims to develop high-efficiency, lightweight all-perovskite tandem solar cells on innovative substrates for cost-effective solar energy harvesting in space applications. | EIC Pathfinder | € 3.993.001 | 2024 | Details |
Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell Applications
SOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence.
Industrial Selective PLAting for Solar Heterojunction
The iSPLASH project aims to revolutionize HJT cell metallisation by using cost-effective copper deposition technology, reducing costs by 90% and eliminating silver to lower carbon emissions.
Fine Line Dispensing Process to apply Narrow Metal Contacts onto Solar Cells
HighLine Technology GmbH aims to revolutionize solar cell metallization by reducing silver usage by 25%, enhancing efficiency by 1%, and increasing throughput for PERC and HJT cells.
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2
OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.
FLEXIBLE LIGHTWEIGHT MULTI-JUNCTION SOLAR CELLS AND MODULES WITH ENHANCED PERFORMANCE FOR EFFICIENT LIGHT HARVESTING IN OUTER SPACE
JUMP INTO SPACE aims to develop high-efficiency, lightweight all-perovskite tandem solar cells on innovative substrates for cost-effective solar energy harvesting in space applications.