Dry-processing of metal halide perovskites into thin films

The APERITIF project aims to develop a novel solvent-free deposition process for high-quality perovskite films to enhance photovoltaic efficiency and attract industrial partnerships for large-scale production.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Perovskite semiconductors are promising for photovoltaics with a potentially very large market. Industrial compatible deposition processes that do not employ solvents are currently unavailable.

New Deposition Process

We have developed a new deposition process that is completely solvent-free, compatible with a wide range of perovskite precursors, operates at moderate vacuum levels, and leads to high-quality films with crystal grains in the order of 500 nm.

Project Goals

In the APERITIF project, we aim to attract industrial sponsors, including:

  1. Equipment manufacturers
  2. Photovoltaic module producers

Our goal is to license this novel process and use it to build a larger scale prototype and implement it for larger area solar cells.

Intellectual Property Protection

To protect this process and the novel perovskite compositions and subsequent solar cells, we will file patents.

Expected Outcomes

In view of the superior perovskite film quality, we expect to obtain more efficient and stable photovoltaic devices.

Production Advantages

As the processing method is compatible with continuous operation, it allows for high-speed production, which is urgently needed to address the enormous growth scenarios of photovoltaic panels.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-11-2023
Einddatum30-4-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITAT DE VALENCIApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Laminated Perovskite Photovoltaics: Enabling large area processing of durable and high efficiency perovskite semiconductor thin films.

LAMI-PERO aims to enhance the efficiency and stability of perovskite photovoltaics through a novel lamination process, paving the way for scalable, high-quality solar cell production.

€ 2.349.755
ERC Proof of...

Sputtering Halide Perovskites for Integration in Monolithic Tandem Solar Cells

SPRINT aims to develop a scalable sputtering deposition process for perovskite-silicon tandem solar cells to achieve over 30% efficiency and accelerate market readiness.

€ 150.000
ERC Consolid...

Engineering metal halide PEROvskites by VAPour deposition

The PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices.

€ 1.999.843
ERC Advanced...

Perovskite triple and quadruple junction solar cells

The project aims to develop triple and quadruple junction perovskite solar cells with 35-40% efficiency by innovating materials and architectures to minimize energy losses.

€ 2.999.926
ERC Consolid...

Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronics

ELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices.

€ 1.991.250

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell Applications

SOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence.

€ 2.930.127
EIC Accelerator

Industrial Selective PLAting for Solar Heterojunction

The iSPLASH project aims to revolutionize HJT cell metallisation by using cost-effective copper deposition technology, reducing costs by 90% and eliminating silver to lower carbon emissions.

€ 2.449.440
EIC Accelerator

Fine Line Dispensing Process to apply Narrow Metal Contacts onto Solar Cells

HighLine Technology GmbH aims to revolutionize solar cell metallization by reducing silver usage by 25%, enhancing efficiency by 1%, and increasing throughput for PERC and HJT cells.

€ 2.500.000
EIC Pathfinder

Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2

OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.

€ 3.229.932
Mkb-innovati...

Temperature Photo Voltaic

Inknowbase BV onderzoekt de haalbaarheid van een innovatieve doorzichtige TPV-energiecel die elektriciteit genereert uit licht en temperatuurverschillen, met als doel functionele prototypes te ontwikkelen.

€ 20.000