AEGEUS - A Novel EEG Ultrasound Device for Functional Brain Imaging and Neurostimulation
Develop a novel wearable device combining ultrasound imaging and EEG for enhanced diagnosis and treatment of neurological disorders, aiming for improved patient outcomes and research advancements.
Projectdetails
Introduction
The overall goal of this project is to develop a radically new diagnostic and therapeutic device for neurological applications which combines a highly innovative ultrasound component for brain imaging and focused stimulation of brain regions with advanced electrophysiological measurements of neural activity.
First Goal
The first goal of the project is the development of a novel ultrasound (US)-based functional imaging method that, in conjunction with electroencephalography (EEG), allows for high spatiotemporal resolution examination of brain activity.
While EEG itself yields best data from neural tissue close to the skull, the US component is designed to deliver images from deeper brain regions.
Second Goal
The second pillar of the device’s function is focused US brain stimulation. Based on the possibility to localize abnormal activity, the neuromodulation component of the novel device can be guided to focal stimulation of selected brain regions, which can be further developed into a closed-loop design.
The full envisioned system is a versatile tool that combines EEG sensors and US transceivers in a wearable headset. The project foresees the development of hardware and software as well as algorithms to integrate the information from both modalities into functional neuroimaging with unprecedented spatiotemporal resolution.
Proof of Concept
Beyond the technical realization, this project includes a proof of concept study to evaluate and demonstrate practical applicability in healthy participants and in patients with epilepsy, during clinical routine examination, cognitive, and sensory stimulation, including test-retest validation.
Impact
The new device will reduce the time to examine and treat neurological patients and the cost thereof. The ability to perform better diagnosis via accurate imaging, targeted neurostimulation, and neuromodulation with a cost-effective, non-invasive device will have transformative effects on treatment options for neurological diseases and stimulate new lines of research in cognitive neuroscience.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.998.988 |
Totale projectbegroting | € 2.998.988 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 28-2-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EVpenvoerder
- UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
- HASKOLINN A AKUREYRI
- G.TEC MEDICAL ENGINEERING GMBH
- GEMEINNUTZIGE SALZBURGER LANDESKLINIKEN BETRIEBSGESELLSCHAFT
- MEDIRI GMBH
- UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
First Closed-loop non-Invasive Seizure Prevention SystemProject RELIEVE aims to develop a non-invasive closed-loop system using AI and wearable ultrasound for real-time monitoring and intervention in brain disorders, starting with epilepsy treatment. | EIC Pathfinder | € 2.809.260 | 2023 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
Closed-loop Individualized image-guided Transcranial Ultrasonic StimulationThe project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders. | EIC Pathfinder | € 3.799.402 | 2022 | Details |
Focused Ultrasound Personalized Therapy for the Treatment of Depression (UPSIDE)The UPSIDE project aims to develop a minimally invasive hybrid neurotechnology for targeted brain stimulation and biomarker monitoring to enhance treatment for Treatment-Resistant Depression. | EIC Pathfinder | € 4.149.921 | 2022 | Details |
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disordersThe MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes. | EIC Pathfinder | € 4.428.402 | 2022 | Details |
First Closed-loop non-Invasive Seizure Prevention System
Project RELIEVE aims to develop a non-invasive closed-loop system using AI and wearable ultrasound for real-time monitoring and intervention in brain disorders, starting with epilepsy treatment.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation
The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.
Focused Ultrasound Personalized Therapy for the Treatment of Depression (UPSIDE)
The UPSIDE project aims to develop a minimally invasive hybrid neurotechnology for targeted brain stimulation and biomarker monitoring to enhance treatment for Treatment-Resistant Depression.
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders
The MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsyThis project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework. | ERC Starting... | € 1.499.575 | 2025 | Details |
SEIZE.SENSEHet project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid. | Mkb-innovati... | € 117.810 | 2021 | Details |
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference StimulationThe EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes. | ERC Consolid... | € 1.996.925 | 2023 | Details |
TURBOEEG: A fast open-source brain imaging package for electroencephalographyThe TurboEEG project aims to develop an open-source EEG imaging tool that reduces computational complexity to linear, making high-resolution brain imaging accessible and affordable for various settings. | ERC Proof of... | € 150.000 | 2025 | Details |
A sonogenetic brain-machine interface for neurosciences and visual restorationDeveloping a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders. | ERC Synergy ... | € 7.817.939 | 2024 | Details |
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsy
This project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework.
SEIZE.SENSE
Het project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid.
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation
The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.
TURBOEEG: A fast open-source brain imaging package for electroencephalography
The TurboEEG project aims to develop an open-source EEG imaging tool that reduces computational complexity to linear, making high-resolution brain imaging accessible and affordable for various settings.
A sonogenetic brain-machine interface for neurosciences and visual restoration
Developing a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders.