Controlling Large Language Models
Develop a framework to understand and control large language models, addressing biases and flaws to ensure safe and responsible AI adoption.
Projectdetails
Introduction
Large language models (LMs) are quickly becoming the backbone of many artificial intelligence (AI) systems, achieving state-of-the-art results in many tasks and application domains. Despite the rapid progress in the field, AI systems suffer from multiple flaws inherited from the underlying LMs: biased behavior, out-of-date information, confabulations, flawed reasoning, and more.
Understanding and Controlling LMs
If we wish to control these systems, we must first understand how they work and develop mechanisms to intervene, update, and repair them. However, the black-box nature of LMs makes them largely inaccessible to such interventions. In this proposal, our overarching goal is to:
Develop a framework for elucidating the internal mechanisms in LMs and for controlling their behavior in an efficient, interpretable, and safe manner.
Objectives
To achieve this goal, we will work through four objectives:
-
Dissecting Internal Mechanisms
We will dissect the internal mechanisms of information storage and recall in LMs and develop ways to update and repair such information. -
Illuminating Higher-Level Capabilities
We will illuminate the mechanisms of higher-level capabilities of LMs to perform reasoning and simulations. We will also repair problems stemming from alignment steps. -
Investigating Training Processes
We will investigate how training processes of LMs affect their emergent mechanisms and develop methods for fine-grained control over the training process. -
Establishing a Standard Benchmark
Finally, we will establish a standard benchmark for mechanistic interpretability of LMs to consolidate disparate efforts in the community.
Conclusion
Taken as a whole, we expect the proposed research to empower different stakeholders and ensure a safe, beneficial, and responsible adoption of LMs in AI technologies by our society.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Uniting Statistical Testing and Machine Learning for Safe PredictionsThe project aims to enhance the interpretability and reliability of machine learning predictions by integrating statistical methods to establish robust error bounds and ensure safe deployment in real-world applications. | ERC Starting... | € 1.500.000 | 2024 | Details |
DEep COgnition Learning for LAnguage GEnerationThis project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks. | ERC Consolid... | € 1.999.595 | 2023 | Details |
Control for Deep and Federated LearningCoDeFeL aims to enhance machine learning methods through control theory, developing efficient ResNet architectures and federated learning techniques for applications in digital medicine and recommendations. | ERC Advanced... | € 2.499.224 | 2024 | Details |
Towards an Artificial Cognitive ScienceThis project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models. | ERC Starting... | € 1.496.000 | 2024 | Details |
Next-Generation Natural Language GenerationThis project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications. | ERC Starting... | € 1.420.375 | 2022 | Details |
Uniting Statistical Testing and Machine Learning for Safe Predictions
The project aims to enhance the interpretability and reliability of machine learning predictions by integrating statistical methods to establish robust error bounds and ensure safe deployment in real-world applications.
DEep COgnition Learning for LAnguage GEneration
This project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks.
Control for Deep and Federated Learning
CoDeFeL aims to enhance machine learning methods through control theory, developing efficient ResNet architectures and federated learning techniques for applications in digital medicine and recommendations.
Towards an Artificial Cognitive Science
This project aims to establish a new field of artificial cognitive science by applying cognitive psychology to enhance the learning and decision-making of advanced AI models.
Next-Generation Natural Language Generation
This project aims to enhance natural language generation by integrating neural models with symbolic representations for better control, adaptability, and reliable evaluation across various applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
LLM Innovatie voor Klantenservice software (LLM)Het project onderzoekt de haalbaarheid van een innovatief LLM voor geautomatiseerde klantenservice, gericht op privacy en maatwerk. | Mkb-innovati... | € 20.000 | 2024 | Details |
Project HominisHet project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert. | Mkb-innovati... | € 20.000 | 2022 | Details |
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen. | Mkb-innovati... | € 20.000 | 2023 | Details |
eXplainable AI in Personalized Mental HealthcareDit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg. | Mkb-innovati... | € 350.000 | 2022 | Details |
LLM Innovatie voor Klantenservice software (LLM)
Het project onderzoekt de haalbaarheid van een innovatief LLM voor geautomatiseerde klantenservice, gericht op privacy en maatwerk.
Project Hominis
Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)
STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.
eXplainable AI in Personalized Mental Healthcare
Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.