Additive Manufacturing of Living Composite Materials
This project aims to create living composites by integrating biological systems into engineering materials, enhancing adaptability, healing, and performance through innovative fabrication techniques.
Projectdetails
Introduction
I envision a world in which the responsive power of biological systems is harnessed through direct integration in materials and structures. Biological materials constantly adapt to their environment, display lower embodied energy, and possess remarkable mechanical properties granted by their hierarchical structures.
Vision for Engineering
Adapting these principles to human-made objects promises to disrupt the way we engineer our high-performance critical structures. However, today’s engineering materials remain lifeless and show only limited abilities to adapt and reinforce under load, or to heal and repair in response to damage.
Research Focus
By addressing the lack of knowledge in the following areas, I will be amongst the first to create living composites that will bridge the gap between biology and stiff, lightweight engineering structures:
- Organism signalling
- Additive fabrication
- Responsive bio-inspired composites
Methodology
To achieve my vision of living structures, I will cross boundaries between three previously disconnected disciplines:
- I will exploit the intrinsic electrical activity of fungal mycelium networks to couple electrical and mechanical response in mycelium composite materials.
- I will enable complex shaping using new additive manufacturing technologies to create bio-inspired living objects augmented with sensing and vasculature networks.
- I will develop topology optimized geometries and large-scale living structures that adapt and remodel during use.
Conclusion
The project combines these aspects to exploit organism growth and function in a way never done before to realize stiff, tough, and responsive materials, while paving the way for a future of living material structures.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.491 |
Totale projectbegroting | € 1.999.491 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 30-6-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bioinspired living skin for architectureThe ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods. | ERC Consolid... | € 1.999.000 | 2022 | Details |
Integrating non-living and living matter via protocellular materials (PCMs) design and synthetic constructionThis project aims to create adaptive protocellular materials that mimic living tissues and interact with cells, advancing synthetic biology and tissue engineering through innovative assembly techniques. | ERC Starting... | € 2.097.713 | 2023 | Details |
Life-Inspired Soft MatterThis project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Bioinspired composite architectures for responsive 4 dimensional photonicsBIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications. | ERC Starting... | € 1.498.579 | 2023 | Details |
Electrochemically Programmable Biochemical Networks for Animate MaterialseBioNetAniMat aims to develop electrochemically programmable artificial animate materials that autonomously adapt and move, enhancing applications in MedTech and soft robotics. | ERC Starting... | € 1.776.727 | 2024 | Details |
Bioinspired living skin for architecture
The ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods.
Integrating non-living and living matter via protocellular materials (PCMs) design and synthetic construction
This project aims to create adaptive protocellular materials that mimic living tissues and interact with cells, advancing synthetic biology and tissue engineering through innovative assembly techniques.
Life-Inspired Soft Matter
This project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics.
Bioinspired composite architectures for responsive 4 dimensional photonics
BIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications.
Electrochemically Programmable Biochemical Networks for Animate Materials
eBioNetAniMat aims to develop electrochemically programmable artificial animate materials that autonomously adapt and move, enhancing applications in MedTech and soft robotics.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Digital design and robotic fabrication of biofoams for adaptive mono-material architectureThe ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions. | EIC Pathfinder | € 3.422.982 | 2024 | Details |
Closed-loop control of fungal materialsLoopOfFun aims to create a framework for developing fungal-based living materials with controlled properties, enhancing sustainability and commercialization in the EU technology sector. | EIC Pathfinder | € 4.098.438 | 2022 | Details |
PRInted Symbiotic Materials as a dynamic platform for Living Tissues productionPRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications. | EIC Pathfinder | € 2.805.403 | 2022 | Details |
Enlisting synthetic fungal-bacterial consortia to produce multi-cellular mycelium-based ELMs with computational capabilityFungateria develops mycelium-based engineered living materials (ELMs) using synthetic co-cultivation and bioprinting for scalable, environmentally responsive products with built-in degradation. | EIC Pathfinder | € 3.857.067 | 2022 | Details |
Living Therapeutic and Regenerative Materials with Specialised Advanced LayersDeveloping skin-inspired engineered living materials with sensing and regenerative functions for therapeutic and protective applications through multicellular consortia and genetic control. | EIC Pathfinder | € 2.856.441 | 2022 | Details |
Digital design and robotic fabrication of biofoams for adaptive mono-material architecture
The ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions.
Closed-loop control of fungal materials
LoopOfFun aims to create a framework for developing fungal-based living materials with controlled properties, enhancing sustainability and commercialization in the EU technology sector.
PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.
Enlisting synthetic fungal-bacterial consortia to produce multi-cellular mycelium-based ELMs with computational capability
Fungateria develops mycelium-based engineered living materials (ELMs) using synthetic co-cultivation and bioprinting for scalable, environmentally responsive products with built-in degradation.
Living Therapeutic and Regenerative Materials with Specialised Advanced Layers
Developing skin-inspired engineered living materials with sensing and regenerative functions for therapeutic and protective applications through multicellular consortia and genetic control.