Digital Forest Twins for AI-based Wildfire Assessment
This project aims to develop a digital twin for wildfires, combining 3D modeling and AI tools to enhance firefighting strategies and accelerate wildfire research through realistic simulations.
Projectdetails
Introduction
Wildfires have a devastating impact on the environment, infrastructure, animals, and human lives. The complex physical dynamics paired with their unpredictable development makes wildfires a dangerous natural phenomenon that is difficult to counteract.
Digital Twins Concept
Recently, digital twins have emerged as a concept that combines geometric modeling, image synthesis, and physical simulation with broad applications in predicting real-world processes. This proposal aims to develop digital twins for wildfires – 3D models of ecosystems coupled with physical simulations – and to build AI-based tools for wildfire assessment.
Implications for Firefighting Services
A wildfire twin with realistic physical simulations will have ground-breaking implications for firefighting services. They will be able to use my framework as part of their decision-making, resulting in an improved ability to combat wildfires, keep human lives safe, and protect the environment.
Advantages of Novel Digital Twin
In contrast to existing wildfire simulations, a novel digital twin will provide:
- Real-time simulations of wildfires
- Complex 3D representations of ecosystems
By relying on state-of-the-art computer graphics technology, a digital twin will support generating photorealistic images and videos of wildfires.
Accelerating AI-Based Solutions
Synthetically generated data with high visual fidelity will profoundly accelerate the development and adoption of AI-based solutions for managing wildfires, as it addresses the bottleneck of capturing and curating expensive real-world training datasets.
Impact on Scientific Investigation
A digital twin that supports fast and accurate simulations of wildfires will have a major impact on the analytical investigation conducted by the scientific community interested in understanding wildfires by accelerating the evaluation of hypotheses.
Virtual Training Environment
Additionally, I plan to use the digital twin as a RobotGym – a virtual training environment for autonomous agents.
Risks and Considerations
A risk of this proposal is that a digital twin may not attain the required degree of realism – in which case it is still possible to identify options for higher quality.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.986.200 |
Totale projectbegroting | € 1.986.200 |
Tijdlijn
Startdatum | 1-6-2025 |
Einddatum | 31-5-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIELpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Digital twins for understanding forest disturbances and recovery from spaceThis project aims to enhance understanding and monitoring of forest disturbances and recovery using advanced 3D models and satellite data across diverse ecosystems, improving carbon stock forecasting. | ERC Starting... | € 1.498.859 | 2022 | Details |
Exploration of Unknown Environments for Digital TwinsThe 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods. | ERC Advanced... | € 2.476.718 | 2023 | Details |
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learningThe Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits. | ERC Starting... | € 1.500.000 | 2025 | Details |
Innovative Digital Twins for Advanced Combustion TechnologiesThe project aims to develop a digital twin for predicting combustion processes, enhancing the design of sustainable energy systems while reducing R&D costs and time. | ERC Proof of... | € 150.000 | 2024 | Details |
Wildfires and Climate Change: Physics-Based Modelling of Fire Spread in a Changing WorldThis project aims to develop a fundamental physical model for predicting uncontrolled fire spread by integrating combustion engineering and environmental science across various scales and conditions. | ERC Starting... | € 1.480.466 | 2025 | Details |
Digital twins for understanding forest disturbances and recovery from space
This project aims to enhance understanding and monitoring of forest disturbances and recovery using advanced 3D models and satellite data across diverse ecosystems, improving carbon stock forecasting.
Exploration of Unknown Environments for Digital Twins
The 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods.
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learning
The Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits.
Innovative Digital Twins for Advanced Combustion Technologies
The project aims to develop a digital twin for predicting combustion processes, enhancing the design of sustainable energy systems while reducing R&D costs and time.
Wildfires and Climate Change: Physics-Based Modelling of Fire Spread in a Changing World
This project aims to develop a fundamental physical model for predicting uncontrolled fire spread by integrating combustion engineering and environmental science across various scales and conditions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
InContract AIHet project onderzoekt de technische en commerciële mogelijkheden van digital twins voor het automatiseren van contractprocessen in de tool InContract, met inzet van AI en deep learning. | Mkb-innovati... | € 20.000 | 2023 | Details |
FAST-simulatieMEJOR Technologies BV ontwikkelt het FAST-natuurbranddetectiesysteem voor snelle detectie van branden in grote gebieden, gericht op het verminderen van schade en kosten door tijdige identificatie van risicogebieden. | Mkb-innovati... | € 20.000 | 2022 | Details |
InContract AIHet project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool. | Mkb-innovati... | € 20.000 | 2023 | Details |
Haalbaarheidsonderzoek naar participatie door efficiënte Digital Twins.Het project onderzoekt de haalbaarheid van een innovatief digital twin-systeem voor burgerparticipatie, met als doel besluitvorming te verbeteren en commerciële toepassing te ontwikkelen. | Mkb-innovati... | € 20.000 | 2021 | Details |
The development of an integrated Digital Twinning development platform (IDTD platform)Het project ontwikkelt een geïntegreerd Digital Twinning-platform om systemen virtueel te ontwerpen en te valideren, wat leidt tot snellere en goedkopere ontwikkeling van betrouwbare systemen. | Mkb-innovati... | € 200.000 | 2019 | Details |
InContract AI
Het project onderzoekt de technische en commerciële mogelijkheden van digital twins voor het automatiseren van contractprocessen in de tool InContract, met inzet van AI en deep learning.
FAST-simulatie
MEJOR Technologies BV ontwikkelt het FAST-natuurbranddetectiesysteem voor snelle detectie van branden in grote gebieden, gericht op het verminderen van schade en kosten door tijdige identificatie van risicogebieden.
InContract AI
Het project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool.
Haalbaarheidsonderzoek naar participatie door efficiënte Digital Twins.
Het project onderzoekt de haalbaarheid van een innovatief digital twin-systeem voor burgerparticipatie, met als doel besluitvorming te verbeteren en commerciële toepassing te ontwikkelen.
The development of an integrated Digital Twinning development platform (IDTD platform)
Het project ontwikkelt een geïntegreerd Digital Twinning-platform om systemen virtueel te ontwerpen en te valideren, wat leidt tot snellere en goedkopere ontwikkeling van betrouwbare systemen.