Turbulence-On-a-Chip: Supercritically Overcoming the Energy Frontier in Microfluidics

The SCRAMBLE project aims to induce turbulent flow in microchips using supercritical fluids to enhance energy transfer processes, potentially revolutionizing microfluidic applications and energy technologies.

Subsidie
€ 1.487.500
2022

Projectdetails

Introduction

The technological opportunities enabled by understanding and controlling the microscale world have not yet been capitalized to disruptively improve energy processes, especially heat transfer and power generation. This is mainly due to the laminar flows typically encountered in microdevices resulting in low mixing and transfer rates.

Problem Statement

This is a central unsolved problem in the thermal-fluid sciences, in what some researchers refer to as lab-on-a-chip and energy - the microfluidic frontier. Therefore, the overarching goal of the SCRAMBLE project is to overcome this long-standing frontier by:

  1. Discovering the fundamentals of inducing turbulent flow in microchips by means of utilizing high-pressure supercritical fluids.
  2. Finding the critical conditions to drastically enhance and control mixing and transfer processes.
  3. Designing, fabricating, and testing a disruptive first-ever series of turbulence-on-a-chip prototypes for transferring energy with a hundredfold performance improvement with respect to standard microsystems.

Implications

Achieving microconfined turbulence has deep scientific and engineering implications for disruptively advancing microfluidic-intensive applications, such as in chemistry and biomedicine. It also opens a new research avenue to develop and apply groundbreaking turbulent flow solutions to microfluidic energy conversion and power generation technologies, which consume an aggregated 70% of the European Union's energy.

Future Prospects

In the medium- to long-term future, the technology proposed could enable:

  1. The efficient miniaturization of thermodynamic cycles for power generation.
  2. Reconceptualization of the next generation of computer processors based on remarkably powerful microfluidic-based cooling.
  3. The adoption of novel microfluidic solutions in fuel cells for transportation and propulsion.

These advances, together with many other potential breakthroughs, could help drive the transition toward a greener energy economy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.487.500
Totale projectbegroting€ 1.487.500

Tijdlijn

Startdatum1-4-2022
Einddatum31-3-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSITAT POLITECNICA DE CATALUNYApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

Non-Stationary Non-Homogeneous Turbulence

This project aims to revolutionize turbulent flow prediction through innovative laboratory, computational, and theoretical methods, leading to a new understanding of non-stationary and non-homogeneous turbulence.

€ 2.499.514
ERC Consolid...

Interaction of Elasto-inertial Turbulence and material microstructure – INTER-ET

The INTER-ET project aims to advance the understanding of elastic turbulence in complex fluids through innovative simulations and experiments, enhancing mixing and heat transfer for various applications.

€ 2.000.000
ERC Starting...

PrEdicting Nucleation to support next-generation microtechnology: Diffuse Interface, fluctuating hydrodynamics and rare events.

E-Nucl aims to revolutionize fluid dynamics by integrating rare-event techniques with multiphase modeling to enhance understanding of nucleation and phase transitions for advanced microtechnologies.

€ 1.499.875
ERC Starting...

Breaking through: The Impact of Turbulence on the Gas-Liquid Interface

GLITR aims to revolutionize the understanding of mass transport across gas-liquid interfaces by using tailored turbulence to explore its impact on fluid mechanics and interfacial phenomena.

€ 2.320.575
ERC Consolid...

Lubricant-infused surfaces in sUrfactant- and Bacteria-laden turbulent FLOWs

This project aims to understand lubricant-infused surfaces in harsh flow environments to enhance their anti-fouling and drag-reduction properties for diverse technological applications.

€ 1.987.355

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

AdDitive mAnufacturing Microfluidica – ADAM

PimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen.

€ 20.000
EIC Pathfinder

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.

€ 3.018.312
EIC Pathfinder

A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing

ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.

€ 3.275.985
EIC Pathfinder

Fibre-based plasmonic micro reactor for flow chemistry

The project aims to develop a novel light-driven chemical reactor using advanced technologies to enable sustainable production of chemicals, supporting the EU's goal of climate neutrality by 2050.

€ 3.111.973