FIrst NEar-TErm ApplicationS of QUAntum Devices
FINE-TEA-SQUAD aims to create a unifying framework for practical NISQ device applications by developing scalable protocols, certification tools, and a quantum network to enhance performance.
Projectdetails
Introduction
Quantum technologies have set remarkable milestones in the last years, e.g. with quantum advantage experiments and loophole-free Bell tests. Despite this progress, the quantum devices we currently have, the so-called noisy, intermediate-scale quantum (NISQ) devices, are too imperfect to run textbook quantum algorithms, yet they hold great potential.
Research Focus
With their advent, much research has been devoted to finding them a first practical application. Focus on optimization, quantum chemistry, and machine learning has been intense, and the developments are closely monitored by governments and industry alike. Variational algorithms in a classical-quantum feedback loop and adiabatic algorithms have been the dominant paradigm.
Challenges
However, important bottlenecks remain that severely maim the performance of NISQ devices, and the field yearns for a novel approach.
Project Overview
FINE-TEA-SQUAD, FIrst NEar-TErm ApplicationS of QUAntum Devices, proposes a radically new vision: to develop a unifying framework that will yield the first practical applications of NISQ devices.
Main Objectives
The main objectives are:
-
Design Experimentally-Friendly Protocols
To design experimentally-friendly protocols for quantum state preparation circumventing major existing bottlenecks (high number of repetitions, noise-induced barren plateaus...) and characterize broad families of states that can be prepared in a scalable way. -
Develop a Practical Certification Toolset
To develop a practical certification toolset amenable to near-term devices, with especial focus on the generation of certified randomness from a single NISQ device. The key idea is to use the hardness of many-body physics in a classical verifier-quantum prover interactive protocol. This approach will overcome the existing limitations of current approaches: it will be both easy to prepare and easy to verify. -
Overcome Hardware Scalability Limitations
To overcome current hardware scalability limitations by combining several NISQ nodes into a small quantum network, and develop the appropriate theoretical framework to efficiently tailor and run quantum algorithms on them.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.485.042 |
Totale projectbegroting | € 1.485.042 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT LEIDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Verifiying Noisy Quantum Devices at ScaleThis project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication. | ERC Consolid... | € 1.997.250 | 2023 | Details |
Artificial Scientific Discovery of advanced Quantum Hardware with high-performance SimulatorsARTDISQ aims to leverage AI and high-performance simulators to automate the design of advanced quantum experiments, enhancing discoveries in gravitational wave detection and imaging systems. | ERC Starting... | € 1.499.221 | 2025 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC Advanced... | € 2.498.759 | 2022 | Details |
Quantum Synthetic Models for Entangled Matter Out of EquilibriumThis project aims to identify and characterize new phases of matter exclusive to NISQ devices by studying quantum circuits and cellular automata, enhancing understanding of many-body physics. | ERC Starting... | € 1.405.750 | 2024 | Details |
Beyond-classical Machine learning and AI for Quantum PhysicsThis project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively. | ERC Consolid... | € 1.995.289 | 2024 | Details |
Verifiying Noisy Quantum Devices at Scale
This project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication.
Artificial Scientific Discovery of advanced Quantum Hardware with high-performance Simulators
ARTDISQ aims to leverage AI and high-performance simulators to automate the design of advanced quantum experiments, enhancing discoveries in gravitational wave detection and imaging systems.
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Quantum Synthetic Models for Entangled Matter Out of Equilibrium
This project aims to identify and characterize new phases of matter exclusive to NISQ devices by studying quantum circuits and cellular automata, enhancing understanding of many-body physics.
Beyond-classical Machine learning and AI for Quantum Physics
This project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Integrated Quantum Network Node using Chip-based Qubit DevicesDelft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity. | EIC Transition | € 2.499.999 | 2025 | Details |
Enabling efficient computation on fault tolerant quantum computersDevelop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities. | EIC Accelerator | € 2.499.999 | 2023 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Scalable Hardware for Large-Scale Quantum ComputingDeveloping a scalable, fault-tolerant quantum computer using advanced cryo-CMOS technology to enhance precision and efficiency in processing complex data across various fields. | EIC Transition | € 2.499.998 | 2023 | Details |
Real-World Commercial Coherent Quantum Annealing TechnologyOur project aims to accelerate quantum computing readiness by providing a full-stack solution with coherent quantum annealers and a Quantum as a Service suite for seamless industry integration. | EIC Transition | € 2.495.000 | 2023 | Details |
Integrated Quantum Network Node using Chip-based Qubit Devices
Delft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity.
Enabling efficient computation on fault tolerant quantum computers
Develop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Scalable Hardware for Large-Scale Quantum Computing
Developing a scalable, fault-tolerant quantum computer using advanced cryo-CMOS technology to enhance precision and efficiency in processing complex data across various fields.
Real-World Commercial Coherent Quantum Annealing Technology
Our project aims to accelerate quantum computing readiness by providing a full-stack solution with coherent quantum annealers and a Quantum as a Service suite for seamless industry integration.