New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Projectdetails
Introduction
Quantum technology is an exciting field where new scientific discoveries have great potential to be used in practical applications such as in quantum computing. Although quantum supremacy has been recently demonstrated in fully superconducting qubits, there is a major challenge in promoting these many-qubit processors feasible for technological applications and advanced science experiments: fidelity of all qubit operations well above 99.9% in a power-efficient control and readout architecture is required.
Project Overview
This project, ConceptQ, aims to demonstrate a new superconducting-qubit concept that has a surprisingly simple structure consisting only of standard materials and a single Josephson junction while providing insensitivity to charge and flux noise, and most importantly, large anharmonicity.
Key Innovations
We combine these properties with a new multimode enhancement idea to demonstrate record-breaking fidelities in:
- Quantum-logic gates
- Initialization
- Readout
Importantly, we introduce cryogenic active components to implement all these three basic operations at millikelvin temperatures, thus paving the way for a power-efficient integrated quantum-classical control system.
Future Directions
Finally, we use the best new methods and designs for multi-qubit processors and demonstrate a new quantum algorithm at high fidelity. With these breakthroughs, we aim to supersede the transmon as the standard high-fidelity superconducting qubit, thus boosting quantum-technology research and methodology not only in computing but also in sensing and simulation.
Broader Impact
This potentially opens horizons for novel scientific discoveries in:
- Classical cryoelectronics
- Quantum calorimetry
- Open quantum systems
- Quantum thermodynamics
ConceptQ is a science project, but thanks to ongoing collaborations with the quantum industry, it holds great potential for the advancement of global well-being, e.g., through envisioned long-term applications in cyber security, quantum chemistry, and artificial intelligence.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.759 |
Totale projectbegroting | € 2.498.759 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- AALTO KORKEAKOULUSAATIO SRpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel Approaches to Error Detection and Protection with Superconducting QubitsThe project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations. | ERC Starting... | € 1.454.635 | 2023 | Details |
Millimetre-Wave Superconducting Quantum CircuitsThe project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges. | ERC Advanced... | € 2.736.708 | 2022 | Details |
Superconducting qubits with 1 second coherence time using rotation codesThis project aims to develop a high-coherence superconducting cavity qubit to enhance quantum computing reliability and efficiency through innovative error correction and design strategies. | ERC Starting... | € 2.275.797 | 2022 | Details |
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensorcQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems. | ERC Starting... | € 1.480.000 | 2023 | Details |
High-impedance Superconducting Circuits Enabling Fault-tolerant Quantum Computing by Wideband Microwave ControlThe project aims to develop autonomous error-corrected qubits using GKP states in high-impedance superconducting circuits to enhance coherence and enable fault-tolerant quantum computing. | ERC Starting... | € 2.081.275 | 2022 | Details |
Novel Approaches to Error Detection and Protection with Superconducting Qubits
The project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations.
Millimetre-Wave Superconducting Quantum Circuits
The project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges.
Superconducting qubits with 1 second coherence time using rotation codes
This project aims to develop a high-coherence superconducting cavity qubit to enhance quantum computing reliability and efficiency through innovative error correction and design strategies.
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensor
cQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems.
High-impedance Superconducting Circuits Enabling Fault-tolerant Quantum Computing by Wideband Microwave Control
The project aims to develop autonomous error-corrected qubits using GKP states in high-impedance superconducting circuits to enhance coherence and enable fault-tolerant quantum computing.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum bits with Kitaev TransmonsThis project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing. | EIC Pathfinder | € 4.749.963 | 2023 | Details |
SuPErConducTing Radio-frequency switch for qUantuM technologiesThe project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation. | EIC Transition | € 2.499.222 | 2022 | Details |
Ferrotransmons and Ferrogatemons for Scalable Superconducting Quantum ComputersThe project aims to develop novel superconducting qubit designs that eliminate flux-bias lines, enhancing scalability and performance in quantum processors through innovative junction integration. | EIC Pathfinder | € 3.948.125 | 2023 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Scalable Qubit Readout to Resolve Superconducting Quantum Computing’s Skeleton in the ClosetSilent Waves aims to revolutionize qubit readout in quantum computing with a compact Traveling Wave Parametric Amplifier, enhancing scalability and performance for practical quantum processors. | EIC Transition | € 2.479.570 | 2025 | Details |
Quantum bits with Kitaev Transmons
This project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing.
SuPErConducTing Radio-frequency switch for qUantuM technologies
The project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation.
Ferrotransmons and Ferrogatemons for Scalable Superconducting Quantum Computers
The project aims to develop novel superconducting qubit designs that eliminate flux-bias lines, enhancing scalability and performance in quantum processors through innovative junction integration.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Scalable Qubit Readout to Resolve Superconducting Quantum Computing’s Skeleton in the Closet
Silent Waves aims to revolutionize qubit readout in quantum computing with a compact Traveling Wave Parametric Amplifier, enhancing scalability and performance for practical quantum processors.