Quantum Synthetic Models for Entangled Matter Out of Equilibrium
This project aims to identify and characterize new phases of matter exclusive to NISQ devices by studying quantum circuits and cellular automata, enhancing understanding of many-body physics.
Projectdetails
Introduction
The exceptional features of many-body quantum systems out of equilibrium are intimately connected with the intrinsic limitations we face when simulating their dynamics on a classical computer, as both are a consequence of the fact that quantum matter is entangled. Digital quantum simulators, or quantum computers, promise to overcome these limitations.
Current Challenges
However, in the current era of Noisy-Intermediate-Scale-Quantum (NISQ) devices, large-scale fault-tolerant quantum computation is out of reach, making full-fledged quantum simulation an ambitious long-term goal. Still, NISQ devices already provide new horizons and opportunities for fundamental research in many-body physics.
Native Hardware
Indeed, in their native hardware, they can be conceptualized as qubit systems evolving by discrete gates, measurements, and feedback, giving rise to completely new collective behavior and universal phenomena.
Project Goals
This project has the ambitious goal of finding and theoretically characterizing new phases of matter which are exclusive to NISQ platforms, charting their largely unexplored phenomenology and possibilities.
Research Approach
Taking on a fundamental perspective, at the intersection of many-body physics and quantum information theory, we will pursue this goal based on the study of synthetic models of quantum circuits and quantum cellular automata (QCA).
Target Results
The target results of this project include:
- Prediction of new dynamical phases arising thanks to the building blocks of NISQ technology and identification of protocols to observe them in existing platforms.
- Deeper understanding of topical but hard problems in many-body physics out of equilibrium, made possible by the simplifying minimal structure of quantum-circuit and QCA models.
Expected Impact
The proposed research is expected to stimulate new synergies between different communities, reflecting the dual nature and interdisciplinary interest of NISQ devices, being both early prototypes for quantum computers and experimental platforms for many-body physics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.405.750 |
Totale projectbegroting | € 1.405.750 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nonequilibrium Many Body Control of Quantum SimulatorsThe project aims to enhance control of nonequilibrium quantum systems using AI-driven reinforcement learning to optimize manipulation techniques for many-body dynamics in advanced materials. | ERC Starting... | € 1.500.000 | 2023 | Details |
Delineating the boundary between the computational power of quantum and classical devicesThis project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning. | ERC Advanced... | € 1.807.721 | 2024 | Details |
FIrst NEar-TErm ApplicationS of QUAntum DevicesFINE-TEA-SQUAD aims to create a unifying framework for practical NISQ device applications by developing scalable protocols, certification tools, and a quantum network to enhance performance. | ERC Starting... | € 1.485.042 | 2022 | Details |
Beyond-classical Machine learning and AI for Quantum PhysicsThis project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively. | ERC Consolid... | € 1.995.289 | 2024 | Details |
Verifiying Noisy Quantum Devices at ScaleThis project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication. | ERC Consolid... | € 1.997.250 | 2023 | Details |
Nonequilibrium Many Body Control of Quantum Simulators
The project aims to enhance control of nonequilibrium quantum systems using AI-driven reinforcement learning to optimize manipulation techniques for many-body dynamics in advanced materials.
Delineating the boundary between the computational power of quantum and classical devices
This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.
FIrst NEar-TErm ApplicationS of QUAntum Devices
FINE-TEA-SQUAD aims to create a unifying framework for practical NISQ device applications by developing scalable protocols, certification tools, and a quantum network to enhance performance.
Beyond-classical Machine learning and AI for Quantum Physics
This project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively.
Verifiying Noisy Quantum Devices at Scale
This project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Spatial Quantum Optical Annealer for Spin HamiltoniansHEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms. | EIC Pathfinder | € 3.260.250 | 2023 | Details |
Spatial Quantum Optical Annealer for Spin Hamiltonians
HEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms.