Engineered multi-well platforms integrating biochemical and biophysical cues for the functional maturation and electrophysiological monitoring of cardiac tissue models.
EMPATIC aims to develop a user-friendly multi-well platform for in vitro modeling of mature human cardiac tissues, enhancing cardiomyocyte maturation and enabling non-invasive electrophysiological monitoring.
Projectdetails
Introduction
Cardiovascular diseases are the major cause of mortality worldwide, making the demand for new therapies an urgent need. Additionally, unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market.
Challenges in Current Models
Such issues could be addressed by relevant in vitro human cardiac tissue models reproducing in vivo-like pharmacological responses. However, most in vitro cardiac tissue models developed so far have been limited by:
- Complex design to enhance cardiomyocyte maturation.
- Poor ability to provide real-time functional assessment.
These limitations make them poorly robust, reproducible, scalable, and user-friendly.
EMPATIC Solution
In EMPATIC, I will overcome such limitations through the synergistic exploitation of biochemical and biophysical stimuli for cardiomyocyte phenotype maturation, studied in the ERC project BIORECAR (772168).
Platform Features
EMPATIC will provide a novel user-friendly and versatile multi-well plate platform for the in vitro modeling of mature functional human cardiac tissues and the non-invasive label-free monitoring of electrophysiological properties. The EMPATIC platform will combine:
(i) Tailor-designed multi-well components, imparting biochemical and biophysical cues to in vitro cultured cells, and
(ii) Bioelectronic components enabling controlled electrical stimulation (ES) and biosensing.
Collaboration and Expertise
Collaboration with major experts in bioelectronics, cardiac regenerative medicine, and electrophysiology, as well as companies, will support EMPATIC innovation.
Team Experience
My previous experience as coordinator of basic and applied research projects and co-founder of academic spin-off companies, along with the entrepreneurship experience of 50% of the EMPATIC team, will support the process of technology development and validation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 31-12-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- POLITECNICO DI TORINOpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac RegenerationNovel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches. | ERC Starting... | € 1.592.281 | 2024 | Details |
Translational optoelectronic control of cardiac rhythm in atrial fibrillationThis project aims to develop a shock-free, optoelectronic method for controlling cardiac rhythm in atrial fibrillation using engineered 3D heart models and advanced monitoring systems. | ERC Consolid... | € 1.999.999 | 2023 | Details |
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions. | ERC Starting... | € 2.430.625 | 2023 | Details |
Smart Cardiac Magnetic Resonance Delivering One-Click and Comprehensive Assessment of Cardiovascular DiseasesThe project aims to revolutionize cardiovascular disease diagnosis and treatment by developing a fast, automated cardiac MRI system for comprehensive, one-click imaging and analysis. | ERC Starting... | € 1.498.529 | 2023 | Details |
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac Regeneration
Novel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches.
Translational optoelectronic control of cardiac rhythm in atrial fibrillation
This project aims to develop a shock-free, optoelectronic method for controlling cardiac rhythm in atrial fibrillation using engineered 3D heart models and advanced monitoring systems.
Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”
EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.
Smart Cardiac Magnetic Resonance Delivering One-Click and Comprehensive Assessment of Cardiovascular Diseases
The project aims to revolutionize cardiovascular disease diagnosis and treatment by developing a fast, automated cardiac MRI system for comprehensive, one-click imaging and analysis.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
De ontwikkeling van een slimme katheterDit project ontwikkelt een slimme hartkatheter en een realistisch testplatform om de efficiëntie van katheterablatie te verbeteren, wat leidt tot meer kennis en werkgelegenheid in Zuid-Nederland. | Mkb-innovati... | € 132.538 | 2018 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
Simultaneous Multiparametric MEA based platform for in-vitro chronic cardiotoxicity assessment with live-cell fluorescence imaging and electrophysiology.SiMulTox develops a novel platform for simultaneous long-term assessment of functional and structural cardiotoxicity, aiming to enhance drug safety evaluation and reshape the in-vitro testing market. | EIC Transition | € 786.875 | 2022 | Details |
De ontwikkeling van een slimme katheter
Dit project ontwikkelt een slimme hartkatheter en een realistisch testplatform om de efficiëntie van katheterablatie te verbeteren, wat leidt tot meer kennis en werkgelegenheid in Zuid-Nederland.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
Simultaneous Multiparametric MEA based platform for in-vitro chronic cardiotoxicity assessment with live-cell fluorescence imaging and electrophysiology.
SiMulTox develops a novel platform for simultaneous long-term assessment of functional and structural cardiotoxicity, aiming to enhance drug safety evaluation and reshape the in-vitro testing market.