Redesigning aortic endograft: enabling in-situ personalized aneurysm healing

EPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models.

Subsidie
€ 1.991.225
2024

Projectdetails

Introduction

Forty years ago, the endograft (EG) enabled the endovascular treatment of aortic aneurysm (AoA) and revolutionized vascular surgery. Still, since then, its technological concept has remained substantially unchanged: EG is a passive device aimed at treating the AoA in its late stage, not to cure the disease, even when discovered early. This proposal introduces a bio-engineered process to redesign EGs as 3D bio-printed, bioresorbable devices loaded with active drug components and validated in-vitro to enable the paradigm shift: from end-stage treatment to early personalized healing.

Challenges

To this aim, EPEIUS must tackle three open challenges:

  1. Available (animal) models often fail to predict human safety and efficacy for candidate therapies.
  2. Potentially effective drugs are challenging to deliver in therapeutic concentrations at the target.
  3. Consequently, there is a limited capacity for AoA healing even for compounds that were preclinically promising.

Hypothesis

We hypothesize that these challenges can be solved simultaneously by designing and fabricating a human in-vitro model of AoA where we can track AoA progression in the presence/absence of bioengineered EG, delivering therapeutic drugs. Grounded on a multi-disciplinary approach, EPEIUS will act as the “trojan horse” to enable the local healing of arterial walls.

Methodology

To verify our hypothesis, we will integrate 3D bioprinting and computational biomechanics to:

Aim 1

Create an in-vitro model of AoA recapitulating dysfunction of endothelial and vascular smooth muscle cells, degeneration of extra-cellular matrix, overall driven by inflammatory state.

Aim 2

Create a customizable EG to carry drug in-situ.

Aim 3

Assess in-vitro the regenerative power of the mesenchymal stem cells’ secretome to heal AoA.

Conclusion

EPEIUS will directly tackle a prominent medical issue, but we are convinced that this innovation in computer-aided engineering, additive manufacturing, and in-vitro pharmacology will create the next generation endovascular device.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.991.225
Totale projectbegroting€ 1.991.225

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI PAVIApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Personalised Bioelectronics for Epithelial Repair

ProBER aims to develop personalized bioelectronic wound dressings using conformal DC electrodes to enhance healing speed and efficiency in chronic wounds, preparing for clinical studies.

€ 150.000
ERC Proof of...

Technology Of Protein delivery in Extracellular Vesicle-induced Cardiac Repair

TOP-EVICARE aims to enhance cardiac repair in heart failure by developing innovative protein loading systems in extracellular vesicles, ensuring effective delivery and commercialization.

€ 150.000
ERC Starting...

Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs

G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.

€ 1.497.351
ERC Starting...

Evolving Organs-on-Chip from developmental engineering to “mechanical re-evolution”

EvOoC develops smart Organs-on-Chip platforms that utilize mechanical forces and machine learning to enhance tissue regeneration and disease modeling for innovative therapeutic solutions.

€ 2.430.625
ERC Consolid...

3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput

HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.

€ 2.969.219

Vergelijkbare projecten uit andere regelingen

EIC Transition

Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell Culture

The Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials.

€ 2.488.750
EIC Accelerator

Revolutionary vascular repair patch to treat aortic dissections

Aortyx's biomimetic bioresorbable adhesive patch aims to treat aortic dissections via endovascular deployment, enhancing natural repair and reducing mortality compared to traditional stents.

€ 2.500.000
EIC Pathfinder

ISOS-Implantable Ecosystems of Genetically Modified Bacteria for the Personalized Treatment of Patients with Chronic Diseases

ISOS aims to create a personalized bioreactor using engineered probiotics for on-demand delivery of therapeutic compounds to treat chronic diseases like age-related macular degeneration.

€ 2.433.300
EIC Pathfinder

High-throughput ultrasound-based volumetric 3D printing for tissue engineering

SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.

€ 2.999.625
EIC Pathfinder

Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord

Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.

€ 3.537.120