Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesis
PolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals.
Projectdetails
Introduction
As the top industrial energy consumer, the chemical industry must rapidly develop new low-carbon technologies to lower the industry’s carbon footprint for preparing chemicals and materials for our everyday life. Current synthetic approaches have a low atom economy and rely on the functionalization of reagents with reactive groups that form desired products at elevated temperatures or pressures.
Challenges in Current Processes
These processes are wasteful and energy-intensive; they form hazardous side products and require energy for heating that is often provided by fossil fuels.
Vision for the Future
Imagine a future where organic chemical reactions are driven with electricity from renewables with a high atom economy and fewer side products. Electroorganic synthesis holds great promise for achieving these goals since reactive intermediates are formed in situ at electrode surfaces, forming products with high selectivities under efficient reaction conditions.
Limitations of Current Electrode Materials
While the field is rapidly maturing and highly selective processes are reported for a wide spectrum of reactions, the majority of electrode materials currently employed are based on precious metals. Relying on precious metals for developing the technology is a risk due to their scarcity, supply-chain bottlenecks, and high cost.
PolyElectroCAT's Innovation
PolyElectroCAT develops a new class of electrode materials for efficient electroorganic synthesis using solely earth-abundant elements. The materials are redox-active carbon-based materials with tailor-made metal complexes that create high activity and selectivity for energy-uphill, reductive electrocatalytic reactions.
Unique Features of the Materials
These materials achieve functionality rarely achieved for metals where electrode materials are solution processable and function as binder- and additive-free electrodes. Moreover, the electrode reacts volumetrically, enabling the exploration of entirely new directions for electrosynthesis employing the entire bulk of the electrode material rather than the surface only.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-1-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CHALMERS TEKNISKA HOGSKOLA ABpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Energy storage with bulk liquid redox materialsThe OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability. | ERC Proof of... | € 150.000 | 2022 | Details |
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable ChemicalsATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques. | ERC Consolid... | € 1.999.774 | 2023 | Details |
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy ConversionThis project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions. | ERC Synergy ... | € 9.973.679 | 2024 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Selective electrochemical separation and recovery of lithium and other metals using tailored monolith electrodesThe ELECTROmonoLITH project aims to develop a modular technology for the selective recovery of lithium and other metals from waste streams, enhancing efficiency and sustainability in resource recovery and wastewater treatment. | ERC Consolid... | € 1.998.615 | 2024 | Details |
Energy storage with bulk liquid redox materials
The OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability.
Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable Chemicals
ATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques.
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy Conversion
This project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Selective electrochemical separation and recovery of lithium and other metals using tailored monolith electrodes
The ELECTROmonoLITH project aims to develop a modular technology for the selective recovery of lithium and other metals from waste streams, enhancing efficiency and sustainability in resource recovery and wastewater treatment.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light OlefinsECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy. | EIC Pathfinder | € 2.519.031 | 2023 | Details |
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomersECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks. | EIC Pathfinder | € 3.776.701 | 2023 | Details |
Electrocatalytic Production of liquid Organic hydrogen carrier and CHemicals from ligninEPOCH aims to revolutionize green hydrogen production and logistics by linking it with liquid organic hydrogen carriers through innovative electrocatalytic processes using lignin derivatives. | EIC Pathfinder | € 3.502.967 | 2022 | Details |
Esplorado, digital electrocatalyst databaseHet project ontwikkelt een webdatabase voor het vergelijken van elektrokatalysatoren om onderzoek te versnellen en praktische toepassingen te stimuleren voor een groenere toekomst. | Mkb-innovati... | € 20.000 | 2021 | Details |
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins
ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomers
ECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks.
Electrocatalytic Production of liquid Organic hydrogen carrier and CHemicals from lignin
EPOCH aims to revolutionize green hydrogen production and logistics by linking it with liquid organic hydrogen carriers through innovative electrocatalytic processes using lignin derivatives.
Esplorado, digital electrocatalyst database
Het project ontwikkelt een webdatabase voor het vergelijken van elektrokatalysatoren om onderzoek te versnellen en praktische toepassingen te stimuleren voor een groenere toekomst.