Selective electrochemical separation and recovery of lithium and other metals using tailored monolith electrodes

The ELECTROmonoLITH project aims to develop a modular technology for the selective recovery of lithium and other metals from waste streams, enhancing efficiency and sustainability in resource recovery and wastewater treatment.

Subsidie
€ 1.998.615
2024

Projectdetails

Introduction

The world is awakening to alarming environmental costs and geopolitical consequences of the ongoing Digital and Green revolution, which are replacing our reliance on fossil fuels with the one on critical raw materials (CRMs). Governments are anxiously searching for alternative sources of supply, and the importance of technology leadership in the recovery of CRMs and other valuable elements from secondary sources is evident.

Project Overview

The ELECTROmonoLITH project will develop a new technology for selective recovery of lithium and other valuable metals, including:

  1. Cobalt
  2. Nickel
  3. Copper

This technology will be applied to complex waste streams and natural/anthropogenic brines, such as:

  • Battery recycling wastewater
  • E-waste leachate
  • Geothermal brines

Challenges and Solutions

Long-standing challenges of electrochemically switched ion exchange include:

  • Poor material stability
  • Low recovery rates and capacities
  • Insufficient selectivity
  • High energy costs

These challenges will be addressed by developing monolith electrodes with a mass transfer-enhancing structure. These electrodes will be tailored for highly selective capture of specific metals from multi-component solutions using surface-imprinted ion-selective recognition units.

Benefits of Monolith Electrodes

Highly ordered electrode architectures with accessible active sites for metal ion cycling will provide several advantages:

  • High space-time yields
  • Minimized pressure drop, thus reducing hydraulic energy requirements
  • Production of large volumes of high purity CRM concentrates in a more energy-efficient way

Scalability and Integration

Given the inherent modularity of electrochemical systems, the project offers:

  • Scalability
  • Autonomous operation
  • Easy coupling to renewable energy sources

Additionally, there is potential to integrate electro-extraction of target metals with electrooxidation of organic pollutants.

Conclusion

The ELECTROmonoLITH project has the potential to provide a platform technology for both resource recovery and wastewater treatment, addressing major challenges of the water-energy nexus.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.998.615
Totale projectbegroting€ 1.998.615

Tijdlijn

Startdatum1-5-2024
Einddatum30-4-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FUNDACIO INSTITUT CATALA DE RECERCA DE L'AIGUApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesis

PolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals.

€ 1.500.000
ERC Proof of...

High Performance and Large-Scale Electrodes for Selective Ion Recovery

PassIon aims to enhance electrochemical deionization for efficient desalination and resource recovery, validating technology at TRL 4-5 while preparing for commercialization.

€ 150.000
ERC Consolid...

Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology

This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.

€ 2.228.750
ERC Consolid...

Multi-metal anode: Towards safe and energy dense batteries

MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.

€ 1.889.561
ERC Advanced...

Circular hydrometallurgy for energy-transition metals

CIRMET aims to revolutionize hydrometallurgy by developing energy-efficient, circular flowsheets for cobalt and nickel extraction that minimize waste and chemical use, enhancing sustainability.

€ 2.494.930

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Delta-R; terugwinnen van metaal en batterijen uit afvalstromen

Het project richt zich op het ontwikkelen van een geavanceerde technologie voor het efficiënt recyclen van metalen en batterijen uit AEC-bodemas, ter bevordering van een circulaire economie en vermindering van milieuvervuiling.

€ 128.555
Mkb-innovati...

Batterij recycling techniek

Dit project ontwikkelt een veilige mechanische recyclingtechniek voor batterijen, met als doel 70% hoogwaardige hergebruik van materialen.

€ 20.000
EIC Pathfinder

ANion Exchange Membrane Electrolysis from Low-grade water sources

ANEMEL develops an efficient anion exchange membrane electrolyzer for green hydrogen production from low-grade water sources, focusing on eco-friendly design and rapid commercialization.

€ 3.314.383
Mkb-innovati...

Full Capacity

Circular Energy Solutions ontwikkelt high performance 2nd-life batterijen voor EV's door recyclingtechnieken te verbeteren, om te voldoen aan de groeiende vraag naar duurzame batterijoplossingen.

€ 20.000
LIFE Standar...

Waste GRAPhite RECycling for new lithium and alkaline batteries

The LIFE GRAPhiREC project aims to establish Europe's first industrial pilot for recycling graphite from battery waste, enhancing sustainability and reducing reliance on Chinese supplies.

€ 4.529.569