Decoding diabetic kidney disease
DECODE-DKD aims to identify novel drug targets for diabetic kidney disease through patient-centric multi-omic research and in-vitro models, advancing precision medicine and treatment options.
Projectdetails
Introduction
Diabetic kidney disease (DKD) is a rapidly growing worldwide health problem and represents one of the most serious threats in current medicine. DKD is the most common cause of chronic kidney disease (CKD) with 20% of DKD patients progressing to end-stage renal disease, which is associated with tremendously increased morbidity and mortality.
Pathophysiology and Treatment Options
The pathophysiology of DKD is complex and incompletely understood, and the number of treatment options is low. The vision of DECODE-DKD is to utilize a patient-centric research approach to identify novel pathways and druggable targets in patients suffering from DKD.
Objectives
Concrete objectives are:
- To establish a spatially resolved multi-omic landscape of human DKD.
- To dissect and identify therapeutic pathways and signalling networks for novel drug target identification.
- To incorporate patient-derived in-vitro models for target validation.
Methodology
It is envisaged that novel spatial and single-cell multi-omic technologies will generate a blueprint and predictive model of DKD. This unbiased map will serve to generate testable hypotheses with spatial and temporal coordinates at single-cell resolution.
To identify disease-relevant pathways and novel druggable targets, in-vitro and in-vivo genome editing approaches will be employed, combined with high-throughput screens. In-vitro assays with human-derived kidney organoids will be used to screen potential compounds facilitating the development of novel therapeutics.
Collaboration and Impact
This highly ambitious interdisciplinary proposal requires the expertise of biomedical engineers, computational biologists, biomedical researchers, and physician-scientists. The generated knowledge and outcomes of DECODE-DKD will - alone and especially together - be truly transformative and provide an incremental step forward towards novel drug targets and precision medicine for the treatment of diabetic kidney disease using a systems medicine approach.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.783.319 |
Totale projectbegroting | € 1.783.319 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITAETSKLINIKUM AACHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Identification of novel diagnostic, predictive and therapeutic strategies in chronic kidney diseaseTargetCKD aims to revolutionize chronic kidney disease management by developing noninvasive diagnostics and novel therapeutics through advanced genomic technologies and interdisciplinary research. | ERC Consolid... | € 1.999.063 | 2022 | Details |
Deciphering the genetic basis of chronic kidney disease towards prevention and personalized therapyThis project aims to uncover the genetic basis of chronic kidney disease (CKD) through next-generation sequencing and develop RNA-based therapies for targeted treatment and improved management. | ERC Starting... | € 1.800.000 | 2022 | Details |
Early detection, molecular mechanisms and therapeutic interventions in chronic kidney diseaseELIMINATE-CKD aims to enhance chronic kidney disease detection by developing a method to quantify nephron number using multi-omics and machine learning for improved diagnostics and therapies. | ERC Consolid... | € 2.000.000 | 2024 | Details |
GenomeDia: a personalized medicine tool for diabetesThe project aims to develop a genetic interpretation tool to subcategorize young diabetes patients, enhancing treatment by leveraging findings from whole genome sequencing. | ERC Proof of... | € 150.000 | 2024 | Details |
Developing RNA-editing based therapy for renal cystic ciliopathiesThis project aims to demonstrate that RNA editing can correct a pathogenic WDR19 mutation in kidney organoids, potentially leading to new therapies for genetic kidney diseases. | ERC Proof of... | € 150.000 | 2025 | Details |
Identification of novel diagnostic, predictive and therapeutic strategies in chronic kidney disease
TargetCKD aims to revolutionize chronic kidney disease management by developing noninvasive diagnostics and novel therapeutics through advanced genomic technologies and interdisciplinary research.
Deciphering the genetic basis of chronic kidney disease towards prevention and personalized therapy
This project aims to uncover the genetic basis of chronic kidney disease (CKD) through next-generation sequencing and develop RNA-based therapies for targeted treatment and improved management.
Early detection, molecular mechanisms and therapeutic interventions in chronic kidney disease
ELIMINATE-CKD aims to enhance chronic kidney disease detection by developing a method to quantify nephron number using multi-omics and machine learning for improved diagnostics and therapies.
GenomeDia: a personalized medicine tool for diabetes
The project aims to develop a genetic interpretation tool to subcategorize young diabetes patients, enhancing treatment by leveraging findings from whole genome sequencing.
Developing RNA-editing based therapy for renal cystic ciliopathies
This project aims to demonstrate that RNA editing can correct a pathogenic WDR19 mutation in kidney organoids, potentially leading to new therapies for genetic kidney diseases.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Ontwikkeling van een diagnostische test voor de vroege detectie van chronische nierschadeDit project onderzoekt de ontwikkeling van een niet-invasieve test voor de vroege detectie van chronische nierschade. | Mkb-innovati... | € 18.067 | 2024 | Details |
Kidney Disease Sweat sensor patch for Early diagnosis and Remote MonIToringThe KERMIT project aims to develop a cost-effective, disposable sweat patch for non-invasive early detection and remote monitoring of chronic kidney disease biomarkers. | EIC Pathfinder | € 3.080.623 | 2023 | Details |
breakthrough technologies for an implantable artificial kidneyKIDNEW aims to develop a modular implantable artificial kidney using innovative technologies for improved, cost-effective kidney replacement therapy without immunosuppressive drugs. | EIC Pathfinder | € 3.293.227 | 2023 | Details |
Haalbaarheid Renal Tracker+Het project onderzoekt de haalbaarheid van de Renal Tracker+, een serviceproduct dat nierpatiënten helpt om de impact van levensstijlveranderingen op hun ziekte te monitoren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients. | EIC Pathfinder | € 4.137.668 | 2023 | Details |
Ontwikkeling van een diagnostische test voor de vroege detectie van chronische nierschade
Dit project onderzoekt de ontwikkeling van een niet-invasieve test voor de vroege detectie van chronische nierschade.
Kidney Disease Sweat sensor patch for Early diagnosis and Remote MonIToring
The KERMIT project aims to develop a cost-effective, disposable sweat patch for non-invasive early detection and remote monitoring of chronic kidney disease biomarkers.
breakthrough technologies for an implantable artificial kidney
KIDNEW aims to develop a modular implantable artificial kidney using innovative technologies for improved, cost-effective kidney replacement therapy without immunosuppressive drugs.
Haalbaarheid Renal Tracker+
Het project onderzoekt de haalbaarheid van de Renal Tracker+, een serviceproduct dat nierpatiënten helpt om de impact van levensstijlveranderingen op hun ziekte te monitoren.
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.
The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients.