Deciphering the radiobiology of targeted radionuclide therapy: from subcellular to intra-tumoural analyses
This project aims to enhance targeted radionuclide therapies for metastatic cancer by elucidating radiobiological mechanisms and developing advanced imaging techniques to improve treatment strategies.
Projectdetails
Background and Unmet Need
Targeted radionuclide therapies (TRTs) are a promising modality to treat patients with metastasized cancer. TRTs function via systemic administration of radiolabelled molecules (α- and β-particle emitters) designed to target tumour cells.
However, the radiobiological effects of TRTs are poorly understood, and rational design of new modalities based on underlying cellular mechanisms is therefore not possible, resulting in suboptimal treatment strategies. Since most patients with advanced cancer cannot be cured at the moment, it is therefore my ultimate goal to improve TRT.
Aim
My ERC project aims to identify and quantitate specific radiobiological mechanisms of TRT-radiation effects in vitro and in vivo.
Objectives
This unique multidisciplinary project will yield critical information on:
- Subcellular and intra-tumoural radiopharmaceutical uptake kinetics
- DNA damage response kinetics
- Dose response simulations
These objectives will profoundly increase our knowledge on TRT to push the field forward.
I will determine cellular dosimetric parameters for α-TRT and β-TRT, determine effects of subcellular and intra-tumoural localizations of TRT on DNA damage induction and survival, image in vivo TRT efficacy, and define effects of treatment heterogeneity to ultimately perform realistic dosimetric simulations in 2D and 3D cancer models.
Besides using previously developed techniques, we will develop an innovative new imaging setup for high-resolution imaging of TRT by intravital confocal microscopy to image real-time cellular processes of anti-cancer therapies in a living organism.
Expected Outcomes
The outcome of my project will not only increase our fundamental knowledge on TRT and yield a novel imaging modality, but additionally has high potential to contribute to improved treatment strategies and ultimately patient outcomes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.750.000 |
Totale projectbegroting | € 1.750.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Capturing tumoral drug metabolism by Cells In the Tissue Environment using spatial pharmacometabolomicsThe CITE project aims to develop innovative analytical technologies to study intratumoral drug metabolism in pancreatic cancer, enhancing understanding of treatment resistance mechanisms. | ERC Starting... | € 2.481.640 | 2024 | Details |
From understanding to rational design of next-generation cancer therapiesThe project aims to enhance cancer treatment efficacy by combining immunotherapy with ultra-low dose therapies to exploit sublethal damage in tumor cells, improving tolerability and clinical outcomes. | ERC Advanced... | € 2.499.893 | 2022 | Details |
Deciphering non-genetic determinants and targetability of cancer cell plasticity.This project aims to reverse cancer cell plasticity in pediatric tumors using advanced genomic techniques to develop new therapeutic strategies for effective treatment. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Targeting SWI/SNF-related chromatin remodelling defects in solid tumoursThis project aims to uncover and exploit synthetic lethal vulnerabilities in SWI/SNF-deficient tumours to enhance anti-tumour immune responses and develop novel immuno-oncology therapies. | ERC Starting... | € 1.499.887 | 2023 | Details |
Decoding Requirements for Infiltration of T ceLLs into solid tumorsThis project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy. | ERC Starting... | € 1.521.000 | 2023 | Details |
Capturing tumoral drug metabolism by Cells In the Tissue Environment using spatial pharmacometabolomics
The CITE project aims to develop innovative analytical technologies to study intratumoral drug metabolism in pancreatic cancer, enhancing understanding of treatment resistance mechanisms.
From understanding to rational design of next-generation cancer therapies
The project aims to enhance cancer treatment efficacy by combining immunotherapy with ultra-low dose therapies to exploit sublethal damage in tumor cells, improving tolerability and clinical outcomes.
Deciphering non-genetic determinants and targetability of cancer cell plasticity.
This project aims to reverse cancer cell plasticity in pediatric tumors using advanced genomic techniques to develop new therapeutic strategies for effective treatment.
Targeting SWI/SNF-related chromatin remodelling defects in solid tumours
This project aims to uncover and exploit synthetic lethal vulnerabilities in SWI/SNF-deficient tumours to enhance anti-tumour immune responses and develop novel immuno-oncology therapies.
Decoding Requirements for Infiltration of T ceLLs into solid tumors
This project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone CancerBoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy. | EIC Pathfinder | € 3.069.321 | 2025 | Details |
Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy. | EIC Pathfinder | € 5.972.875 | 2024 | Details |
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography ApproachPERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects. | EIC Pathfinder | € 2.740.675 | 2023 | Details |
SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGSSMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery. | EIC Pathfinder | € 2.135.087 | 2024 | Details |
NEXT GENERATION IMAGING FOR REAL-TIME DOSE VERIFICATION ENABLING ADAPTIVE PROTON THERAPYThe NOVO project aims to develop a groundbreaking real-time dose verification technology for proton radiotherapy, enhancing personalized cancer treatment and improving patient outcomes. | EIC Pathfinder | € 3.759.489 | 2024 | Details |
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone Cancer
BoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy.
Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.
NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach
PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.
SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGS
SMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery.
NEXT GENERATION IMAGING FOR REAL-TIME DOSE VERIFICATION ENABLING ADAPTIVE PROTON THERAPY
The NOVO project aims to develop a groundbreaking real-time dose verification technology for proton radiotherapy, enhancing personalized cancer treatment and improving patient outcomes.