From understanding to rational design of next-generation cancer therapies
The project aims to enhance cancer treatment efficacy by combining immunotherapy with ultra-low dose therapies to exploit sublethal damage in tumor cells, improving tolerability and clinical outcomes.
Projectdetails
Introduction
Immunotherapy combined with cytotoxic and molecular therapies have entered centre stage as novel treatments for cancer. Despite this advance, toxicity and insufficient efficacy in many patients remain major obstacles and illustrate the need for therapy improvement based on a deeper understanding of the cellular damage and repair responses to drugs and immunotherapy.
Proposed Approach
To overcome this roadblock, I propose a previously unappreciated approach by combining immunotherapy with cancer therapies at ultra-low, sublethal doses. We demonstrated that cytotoxic T cells induce sublethal membrane and DNA damage and oxidative stress which, when repaired, allows for tumor cell survival. However, when damage adds up, the tumor cell dies.
Hypothesis
I hypothesize that sublethal effects reveal novel vulnerabilities in cancer cells which can be exploited by complementary multi-targeted therapies at ultra-low doses that are nontoxic individually but, when combined, achieve lethality by an additive mechanism.
Methodology
Taking advantage of innovative microscopy, I aim to produce a catalogue of damages and repair types, and their combined effects in tumor cells. Single-cell analyses combined with advanced statistics and mathematical modeling will be used to derive the damage profile and duration of damage for each modality in tumor cells, yet without side effects towards immune effector cells.
Algorithm Design
I will design algorithms for multi-targeted regimens to achieve additive damage, reduced repair, and death induction, and validate them in immunotherapy models in vitro and in local and disseminated preclinical cancer in vivo. If resistance occurs, survival programs will be detected by single-cell transcriptomics and countered by orthogonal targeting.
Objectives
subLETHAL will:
- Identify sublethal damage as the basis of cytotoxic therapy.
- Enable rational design of multi-targeted ultra-low dose additive regimens.
- Advance the understanding, efficacy, and tolerability of chemoimmunotherapy.
- Facilitate rapid clinical translation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.893 |
Totale projectbegroting | € 2.499.893 |
Tijdlijn
Startdatum | 1-12-2022 |
Einddatum | 30-11-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUMpenvoerder
- TECHNISCHE UNIVERSITAET DRESDEN
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unlocking a T cell-mediated Immune response in therapy-challenged TumorsUnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapiesThe TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies. | ERC Advanced... | € 2.500.000 | 2022 | Details |
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapyThis project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling. | ERC Starting... | € 1.500.000 | 2023 | Details |
Nano-assisted digitalizing of cancer phenotyping for immunotherapyThe ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes. | ERC Consolid... | € 1.993.875 | 2023 | Details |
Paradoxical activation of oncogenic signaling as a cancer treatment strategy.This project aims to selectively kill cancer cells by hyperactivating oncogenic signaling while disrupting stress responses, using multi-omics to identify vulnerabilities and effective combination therapies. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Unlocking a T cell-mediated Immune response in therapy-challenged Tumors
UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies
The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapy
This project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling.
Nano-assisted digitalizing of cancer phenotyping for immunotherapy
The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.
Paradoxical activation of oncogenic signaling as a cancer treatment strategy.
This project aims to selectively kill cancer cells by hyperactivating oncogenic signaling while disrupting stress responses, using multi-omics to identify vulnerabilities and effective combination therapies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.