SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGS

SMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery.

Subsidie
€ 2.135.087
2024

Projectdetails

Introduction

From diagnostic applications in the quantification and characterisation of biomarker expression in cancer patients, through to molecularly targeted radionuclide therapy, radiopharmaceuticals are at the frontline of modern personalised medicine. The radical long-term vision of SMARTdrugs is to harness the untapped potential of supramolecular chemistry to create a new class of therapies - radiotheranostics - which combine both diagnostic and therapeutic radionuclides in one compound.

Methodology

By using the self-assembly of host-guest supramolecular coordination complexes and molecularly interlocked molecules as scaffolds for creating supramolecular radiotheranostic drugs, new methods for radiotheranostic synthesis that break away from conventional medicinal chemistry concepts will be introduced. SMARTdrugs will establish a proof-of-concept demonstrating the utility of non-covalent systems in the design of multifunctional radiotheranostic agents with tailored pharmacokinetics.

Application

These agents will be applied in challenging drug-delivery scenarios, including targeted delivery to cancers of the lung and brain.

Objectives

Our 3 main objectives:

  1. Develop new chemical landscapes using non-covalent bonding to create functionalised supramolecular compounds for cancer-specific theranostics.
  2. Elucidate the key relationships between supramolecular radiotheranostics and the complex tumour microenvironment that determine drug efficacy in vivo.
  3. Perform head-to-head studies to establish a proof-of-principle that supramolecular chemistry is a viable alternative to classical radiopharmaceutical design.

Long-term Goals

The long-term goal is to establish a new chemical landscape for radiotheranostic design and to facilitate clinical translation of this new technology. Successful experiments will lay the foundations for exploiting supramolecular chemistry in the wider context of drug delivery and theranostics, and for studying biological interactions at the cellular to whole-organism levels.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.135.087
Totale projectbegroting€ 2.135.087

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2027
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET MUENCHENpenvoerder
  • UNIVERSITAIR MEDISCH CENTRUM UTRECHT
  • ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
  • UNIVERSITAT ZURICH
  • KING'S COLLEGE LONDON

Land(en)

GermanyNetherlandsSpainSwitzerlandUnited Kingdom

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
EIC Pathfinder

Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.

NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.

€ 5.972.875
EIC Pathfinder

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

€ 2.740.675
EIC Pathfinder

Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of Chemotherapeutics

The project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer.

€ 4.420.511
EIC Pathfinder

Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infections

LeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations.

€ 2.665.564

Vergelijkbare projecten uit andere regelingen

ERC Starting...

Breaching the protective cancer stroma with radiotherapy-responsive liposomes

This project aims to enhance liposomal drug delivery in pancreatic cancer by integrating radiocatalytic nanomaterials for controlled drug release and improved tissue permeability through radiotherapy.

€ 1.942.158
ERC Starting...

Deciphering the radiobiology of targeted radionuclide therapy: from subcellular to intra-tumoural analyses

This project aims to enhance targeted radionuclide therapies for metastatic cancer by elucidating radiobiological mechanisms and developing advanced imaging techniques to improve treatment strategies.

€ 1.750.000
ERC Consolid...

Development of Suprasensors and Assays for Molecular Diagnostics

SupraSense aims to develop advanced biomimetic sensors for detecting metabolites in biofluids, enhancing diagnostic selectivity and sensitivity for early disease detection.

€ 1.994.069
ERC Proof of...

Remotely actuated re-shaped nanocarriers for tumour targeting

Developing remotely actuated, anisotropic metal/polymer hybrid nanoparticles for targeted drug delivery in cancer to enhance therapeutic efficacy and minimize side effects.

€ 150.000
ERC Starting...

Designing organic molecules as platforms for reversible charge-to-spin conversion with applications in chromophore optimisation and drug discovery

This project aims to explore reversible diradical formation in donor-acceptor organic molecules to enhance light-emitting materials and drug discovery through novel design criteria.

€ 1.498.361