Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular Precision
Develop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage.
Projectdetails
Introduction
Bioorthogonal chemistries cross the boundaries between static chemical connectivity and the dynamic physiologic regulation of molecular state, enabling powerful tools for molecular control in complex biological environments. In combination with ligand-directed drug delivery, safe and selective chemical reactions that perform efficiently in vivo can fuel the design of new therapeutic strategies.
Challenges in Drug Targeting
Despite significant progress in the field of drug targeting, it remains challenging to shuttle therapeutic agents to the desired tissue, reaching the necessary cellular and even sub-cellular level, all while avoiding collateral damage.
Proposed Solution
To engage this challenge, I aim to develop the concept of bioorthogonal cascade-targeting to direct the recognition, activation, and intracellular delivery of therapeutic constructs with molecular precision.
Development of Chemical Tools
We will develop next-level chemical tools for bioorthogonal bond-cleavage with exceptional reaction performance and the unique capability of tunable sequential release events (‘tandem release’). These innovations will enable us to design bioorthogonally activatable ligands for multiple therapeutic approaches that open new ground, most notably in escalating the complexity of (bio)chemical choreography.
Cascade Processes
In particular, I propose cascade processes, triggered by a single biocompatible click event, that can achieve:
- The ‘bridging’ of non-internalizing cell-surface receptors to forward therapeutics into cells.
- The ‘hopping’ of drug conjugates from one target to another, or from one cell to another.
- Kinetically preprogrammed ‘escape’ of drugs from the endosomal compartment of cells entered via cascade-targeting.
Conclusion
This will allow us to spatially and temporally control the movement and release of therapeutics in a (sub)cellular environment, and ultimately to establish bioorthogonal cascades as unique strategies that shift the paradigm of biologically controlled drug delivery.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.479.321 |
Totale projectbegroting | € 1.479.321 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic PrecisionDevelop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies. | ERC Starting... | € 1.496.795 | 2024 | Details |
A general approach for the design of covalent protein proximity inducersThis project aims to expand biochemical perturbations using CoLDR chemistry to create small molecules that activate enzymes, modify PTMs, and control protein interactions for therapeutic applications. | ERC Consolid... | € 1.998.744 | 2024 | Details |
Mix and Match: One-step activation for targeted drug deliveryThis project aims to develop a novel, efficient method for on-demand attachment of targeting ligands to nanocarriers, enhancing drug delivery efficacy while reducing toxicity in cancer therapies. | ERC Proof of... | € 150.000 | 2024 | Details |
Creating an orthogonal gate to the brainThis project aims to revolutionize brain drug delivery by creating a novel orthogonal receptor for efficient transport across the blood-brain barrier, targeting treatments for brain metastatic breast cancer. | ERC Starting... | € 1.499.136 | 2023 | Details |
Functional Nanoscale TherapeuticsDevelop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer. | ERC Advanced... | € 2.499.796 | 2024 | Details |
Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic Precision
Develop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies.
A general approach for the design of covalent protein proximity inducers
This project aims to expand biochemical perturbations using CoLDR chemistry to create small molecules that activate enzymes, modify PTMs, and control protein interactions for therapeutic applications.
Mix and Match: One-step activation for targeted drug delivery
This project aims to develop a novel, efficient method for on-demand attachment of targeting ligands to nanocarriers, enhancing drug delivery efficacy while reducing toxicity in cancer therapies.
Creating an orthogonal gate to the brain
This project aims to revolutionize brain drug delivery by creating a novel orthogonal receptor for efficient transport across the blood-brain barrier, targeting treatments for brain metastatic breast cancer.
Functional Nanoscale Therapeutics
Develop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of ChemotherapeuticsThe project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer. | EIC Pathfinder | € 4.420.511 | 2023 | Details |
On-Demand Bioresorbable OptoElectronic System for In-Vivo and In-Situ Monitoring of Chemotherapeutic DrugsDevelop a bioresorbable chemical sensing system for real-time monitoring of doxorubicin in-vivo, enhancing personalized cancer treatment while eliminating the need for device retrieval surgery. | EIC Pathfinder | € 2.606.250 | 2022 | Details |
SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGSSMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery. | EIC Pathfinder | € 2.135.087 | 2024 | Details |
Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of Chemotherapeutics
The project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer.
On-Demand Bioresorbable OptoElectronic System for In-Vivo and In-Situ Monitoring of Chemotherapeutic Drugs
Develop a bioresorbable chemical sensing system for real-time monitoring of doxorubicin in-vivo, enhancing personalized cancer treatment while eliminating the need for device retrieval surgery.
SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGS
SMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery.