Mix and Match: One-step activation for targeted drug delivery
This project aims to develop a novel, efficient method for on-demand attachment of targeting ligands to nanocarriers, enhancing drug delivery efficacy while reducing toxicity in cancer therapies.
Projectdetails
Introduction
Current clinically approved drug delivery systems, such as liposome, PEGylated liposome, and polymeric micelle, predominantly rely on passive accumulation within tumor tissues by diffusion through the defective tumor vessels during circulation. The targeting efficacy toward cancer cells is very limited due to their inadequate interaction with cancer cells.
Limitations of Current Methods
The attachment of targeting ligands to nanocarriers has demonstrated its effectiveness in enhancing binding affinity and, consequently, facilitating cellular uptake via receptor-mediated endocytosis. However, the conventional methods employed for ligand attachment suffer from:
- Harsh conditions
- Low efficiency
- Limited control over ligand orientation
These drawbacks compromise the targeting performance and are believed to result in the current absence of a targeted drug delivery system on the market.
Proposed Solution
In this project, we propose a simple, efficient, and mild attachment method to spontaneously activate on-demand nanocarriers.
Potential Impact
This innovative approach has the potential to have a multi-level effect:
- Revolutionize various fields, including drug delivery, diagnostics, and nanotechnology, by providing advanced tools for targeted therapies and diagnostics.
- Develop novel methodologies that can be applied to existing technologies to enhance uptake, localization, and efficacy while minimizing systemic toxicity.
This could potentially shift the health-economic balance for some treatments which were previously inaccessible.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- STICHTING RADBOUD UNIVERSITEITpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Remotely actuated re-shaped nanocarriers for tumour targetingDeveloping remotely actuated, anisotropic metal/polymer hybrid nanoparticles for targeted drug delivery in cancer to enhance therapeutic efficacy and minimize side effects. | ERC Proof of... | € 150.000 | 2022 | Details |
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug deliveryThis project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks. | ERC Proof of... | € 150.000 | 2023 | Details |
Breaching the protective cancer stroma with radiotherapy-responsive liposomesThis project aims to enhance liposomal drug delivery in pancreatic cancer by integrating radiocatalytic nanomaterials for controlled drug release and improved tissue permeability through radiotherapy. | ERC Starting... | € 1.942.158 | 2023 | Details |
Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular PrecisionDevelop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage. | ERC Starting... | € 1.479.321 | 2023 | Details |
Functional Nanoscale TherapeuticsDevelop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer. | ERC Advanced... | € 2.499.796 | 2024 | Details |
Remotely actuated re-shaped nanocarriers for tumour targeting
Developing remotely actuated, anisotropic metal/polymer hybrid nanoparticles for targeted drug delivery in cancer to enhance therapeutic efficacy and minimize side effects.
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug delivery
This project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks.
Breaching the protective cancer stroma with radiotherapy-responsive liposomes
This project aims to enhance liposomal drug delivery in pancreatic cancer by integrating radiocatalytic nanomaterials for controlled drug release and improved tissue permeability through radiotherapy.
Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular Precision
Develop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage.
Functional Nanoscale Therapeutics
Develop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing systemThe NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases. | EIC Pathfinder | € 2.988.377 | 2023 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
TraffikGene-Tx: Targeted Peptide Carriers for RNA DeliveryTraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs. | EIC Transition | € 2.498.963 | 2023 | Details |
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system
The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
TraffikGene-Tx: Targeted Peptide Carriers for RNA Delivery
TraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs.