Widely Tunable Soliton Microcomb Chip
The ELASTIC project aims to develop low-power, highly tunable DKS microcombs using AlGaAsOI technology to enhance performance for advanced applications like LiDAR and wavelength-division multiplexing.
Projectdetails
Introduction
The generation of optical frequency combs through nonlinear optical processes is an enabling technology for a wide range of applications. These combs, consisting of equally spaced coherent light frequencies, are highly valued in applications such as communications, LiDAR, and microwave photonics.
Development of Frequency Combs
The first generation of combs, developed using mode-locked lasers, expanded their spectrum through nonlinear media to create broadband frequency combs. Initially, these systems relied on bulky free-space optical components.
Microcomb Technology
Efforts to reduce the size, weight, and power (SWaP) of these systems led to the development of microcomb technology. Dissipative Kerr soliton (DKS) microcombs generated via nonlinear optical processes in microresonators have emerged as a more compact, scalable, chip-based alternative.
Advantages of DKS Microcombs
DKS microcombs offer several advantages:
- Higher repetition rates
- Lower power consumption
- Simplified broadband spectrum generation
These features have attracted significant market interest.
Challenges Faced by DKS Microcombs
Despite their advantages, DKS microcombs face several bottlenecks, including:
- Limited tunability
- Sensitivity
- Poor conversion efficiency
ELASTIC Project Objectives
The ELASTIC project aims to address these issues by leveraging the high thermo-optic coefficient and nonlinearity of the AlGaAsOI platform combined with a novel pump scheme.
Expected Outcomes
This approach will enable:
- Low-power
- Highly tunable
- Insensitive chip-scale comb systems
These advancements are targeted for emerging applications like:
- Massively parallel frequency-modulated continuous-wave LiDAR
- Wavelength-division multiplexing systems
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2025 |
Einddatum | 31-12-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- DANMARKS TEKNISKE UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Highly-Efficient Seeded Frequency Comb Generation on a ChipThe COMBCHIP project aims to create an ultra-efficient, chip-scale optical frequency comb generator using nonlinear AlGaAs waveguides for advanced applications like atomic clocks and spectroscopy. | ERC Proof of... | € 150.000 | 2023 | Details |
Photonic molecule microcombsThe project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic SystemsVeritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies. | ERC Proof of... | € 150.000 | 2024 | Details |
Versatile optical frequency combWe aim to develop a novel, tunable frequency comb device that merges existing technologies to enhance metrology and spectroscopy applications, with significant commercial potential. | ERC Proof of... | € 150.000 | 2023 | Details |
Electro-optic frequency comb generation in the mid-infrared.The project aims to develop compact, cost-effective mid-infrared spectroscopy systems using innovative frequency comb sources based on graded index Silicon Germanium photonics for environmental monitoring. | ERC Advanced... | € 2.426.034 | 2023 | Details |
Highly-Efficient Seeded Frequency Comb Generation on a Chip
The COMBCHIP project aims to create an ultra-efficient, chip-scale optical frequency comb generator using nonlinear AlGaAs waveguides for advanced applications like atomic clocks and spectroscopy.
Photonic molecule microcombs
The project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy.
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic Systems
Veritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies.
Versatile optical frequency comb
We aim to develop a novel, tunable frequency comb device that merges existing technologies to enhance metrology and spectroscopy applications, with significant commercial potential.
Electro-optic frequency comb generation in the mid-infrared.
The project aims to develop compact, cost-effective mid-infrared spectroscopy systems using innovative frequency comb sources based on graded index Silicon Germanium photonics for environmental monitoring.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Universal frequency-comb platform for datacenter communicationsThe project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028. | EIC Transition | € 2.499.998 | 2023 | Details |
MOde LOcKing for Advanced Sensing and Imaging)The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology. | EIC Transition | € 2.522.500 | 2024 | Details |
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System IntegrationCombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology. | EIC Transition | € 2.523.585 | 2024 | Details |
Integrated femtosecond laser based frequency comb and photonic microwave oscillatorFemto-iCOMB aims to develop a stabilized femtosecond laser frequency comb for diverse applications in sensing, LIDAR, and RF technologies, validated through industrial prototype testing. | EIC Transition | € 2.498.245 | 2024 | Details |
Chip-scale Optical Atomic ClockThis project aims to develop the world's first chip-scale optical atomic clock using advanced micro-comb technology, revolutionizing timekeeping for GPS and various applications. | EIC Pathfinder | € 2.687.263 | 2022 | Details |
Universal frequency-comb platform for datacenter communications
The project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028.
MOde LOcKing for Advanced Sensing and Imaging)
The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology.
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System Integration
CombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology.
Integrated femtosecond laser based frequency comb and photonic microwave oscillator
Femto-iCOMB aims to develop a stabilized femtosecond laser frequency comb for diverse applications in sensing, LIDAR, and RF technologies, validated through industrial prototype testing.
Chip-scale Optical Atomic Clock
This project aims to develop the world's first chip-scale optical atomic clock using advanced micro-comb technology, revolutionizing timekeeping for GPS and various applications.