Highly-Efficient Seeded Frequency Comb Generation on a Chip
The COMBCHIP project aims to create an ultra-efficient, chip-scale optical frequency comb generator using nonlinear AlGaAs waveguides for advanced applications like atomic clocks and spectroscopy.
Projectdetails
Introduction
Generating new colors (frequency components) of light through nonlinear optical phenomena is one of the key drivers of modern optical technology. The spectrally diverse coherent light, widely known as an optical frequency comb, can be produced through a nonlinear process.
Applications of Optical Frequency Combs
The optical frequency comb enables:
- Energy-efficient optical communication
- Precision spectroscopy
- Optical atomic clocks
Challenges in Current Technology
However, the frequency comb sources currently rely on bulky and power-hungry laser systems, hampering their deployment outside the laboratory environment. There are great demands in lowering the size, weight, and power (SWaP) of such broadband light sources.
Despite the significant progress in the miniaturization of comb systems and microcomb technologies, it is still a huge challenge to drive a broadband (larger than an octave) comb with microwave repetition rate using on-chip pump sources due to the limited performance of on-chip lasers.
Project Goals
The COMBCHIP project aims to develop an ultra-efficient comb generator by combining:
- The highly nonlinear AlGaAs waveguide
- A newly developed seeded pumping scheme
Expected Outcomes
The developed comb sources will feature:
- An octave-spanning bandwidth
- Microwave repetition rate
- Ultra-low operation power
These advancements will enable chip-scale comb systems in emerging applications such as atomic optical clocks in satellites and mid-infrared spectroscopy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 28-2-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- DANMARKS TEKNISKE UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Widely Tunable Soliton Microcomb ChipThe ELASTIC project aims to develop low-power, highly tunable DKS microcombs using AlGaAsOI technology to enhance performance for advanced applications like LiDAR and wavelength-division multiplexing. | ERC Proof of... | € 150.000 | 2025 | Details |
Photonic molecule microcombsThe project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Versatile optical frequency combWe aim to develop a novel, tunable frequency comb device that merges existing technologies to enhance metrology and spectroscopy applications, with significant commercial potential. | ERC Proof of... | € 150.000 | 2023 | Details |
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic SystemsVeritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies. | ERC Proof of... | € 150.000 | 2024 | Details |
Electro-optic frequency comb generation in the mid-infrared.The project aims to develop compact, cost-effective mid-infrared spectroscopy systems using innovative frequency comb sources based on graded index Silicon Germanium photonics for environmental monitoring. | ERC Advanced... | € 2.426.034 | 2023 | Details |
Widely Tunable Soliton Microcomb Chip
The ELASTIC project aims to develop low-power, highly tunable DKS microcombs using AlGaAsOI technology to enhance performance for advanced applications like LiDAR and wavelength-division multiplexing.
Photonic molecule microcombs
The project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy.
Versatile optical frequency comb
We aim to develop a novel, tunable frequency comb device that merges existing technologies to enhance metrology and spectroscopy applications, with significant commercial potential.
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic Systems
Veritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies.
Electro-optic frequency comb generation in the mid-infrared.
The project aims to develop compact, cost-effective mid-infrared spectroscopy systems using innovative frequency comb sources based on graded index Silicon Germanium photonics for environmental monitoring.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Universal frequency-comb platform for datacenter communicationsThe project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028. | EIC Transition | € 2.499.998 | 2023 | Details |
Integrated femtosecond laser based frequency comb and photonic microwave oscillatorFemto-iCOMB aims to develop a stabilized femtosecond laser frequency comb for diverse applications in sensing, LIDAR, and RF technologies, validated through industrial prototype testing. | EIC Transition | € 2.498.245 | 2024 | Details |
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System IntegrationCombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology. | EIC Transition | € 2.523.585 | 2024 | Details |
Chip-scale Optical Atomic ClockThis project aims to develop the world's first chip-scale optical atomic clock using advanced micro-comb technology, revolutionizing timekeeping for GPS and various applications. | EIC Pathfinder | € 2.687.263 | 2022 | Details |
MOde LOcKing for Advanced Sensing and Imaging)The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology. | EIC Transition | € 2.522.500 | 2024 | Details |
Universal frequency-comb platform for datacenter communications
The project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028.
Integrated femtosecond laser based frequency comb and photonic microwave oscillator
Femto-iCOMB aims to develop a stabilized femtosecond laser frequency comb for diverse applications in sensing, LIDAR, and RF technologies, validated through industrial prototype testing.
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System Integration
CombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology.
Chip-scale Optical Atomic Clock
This project aims to develop the world's first chip-scale optical atomic clock using advanced micro-comb technology, revolutionizing timekeeping for GPS and various applications.
MOde LOcKing for Advanced Sensing and Imaging)
The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology.