Integrated femtosecond laser based frequency comb and photonic microwave oscillator
Femto-iCOMB aims to develop a stabilized femtosecond laser frequency comb for diverse applications in sensing, LIDAR, and RF technologies, validated through industrial prototype testing.
Projectdetails
Introduction
In femto-iCOMB, we develop the first integrated femtosecond laser-based frequency comb that can serve as the basis for a wide variety of optical and Radio-Frequency (RF) technologies ranging from high resolution environmental and health sensing to LIDAR and RADAR.
Background
Femto-iCOMB is based on the successful EIC-pathfinder project FEMTOCHIP, where we demonstrate an integrated high power femtosecond laser enabling extremely low jitter on chip scale.
Technology Development
Here, we tame the free running comb from the integrated femtosecond laser with on-chip continuum generation, carrier-envelope, and repetition rate locking to an optical reference to become a fully stabilized femtosecond laser frequency comb (FSLFC) with extremely high frequency stability.
Applications
We use the femto-iCOMB to pursue photonic microwave oscillators for a variety of applications, including:
- Autonomous driving
- Ultra-low phase noise oscillators for advanced signal generators
- RF-test and measurement equipment
We demonstrate these devices in relevant industrial environments for each application.
Validation and Business Case
These prototype field tests will validate the TRL levels achieved for each application. Together with surveys of potential customers, this will inform the business case to be made for each potential product line.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.245 |
Totale projectbegroting | € 2.498.245 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CYCLE GMBHpenvoerder
- DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
- LIGENTEC FRANCE
- ALUVIA PHOTONICS B.V.
- EURA AG
- LIGENTEC SA
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MOde LOcKing for Advanced Sensing and Imaging)The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology. | EIC Transition | € 2.522.500 | 2024 | Details |
Frequency-agile lasers for photonic sensingFORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs. | EIC Transition | € 1.966.218 | 2023 | Details |
Universal frequency-comb platform for datacenter communicationsThe project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028. | EIC Transition | € 2.499.998 | 2023 | Details |
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System IntegrationCombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology. | EIC Transition | € 2.523.585 | 2024 | Details |
Coherent Comb for Co-Packaged OpticsCOCOPOP aims to develop a coherent-capable external laser source to enhance optical interconnects in datacenters, addressing scaling challenges and positioning Europe in a $2.2bn market by 2032. | EIC Transition | € 2.482.500 | 2024 | Details |
MOde LOcKing for Advanced Sensing and Imaging)
The MOLOKAI project aims to develop chip-scale optical frequency combs for enhanced 3D imaging and sensing applications through collaboration and advanced integrated optics technology.
Frequency-agile lasers for photonic sensing
FORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs.
Universal frequency-comb platform for datacenter communications
The project aims to unify InAs/GaAs quantum-dot and microresonator-based comb lasers into a chip-scale platform to enhance datacom capacity and efficiency by 2028.
Chip-Scale Optical Frequency Combs for Communications and Sensing: A Toolkit for System Integration
CombTools aims to develop high-performance Kerr comb generators and signal processing tools, enabling commercial applications in optical communications and beyond through innovative silicon-nitride technology.
Coherent Comb for Co-Packaged Optics
COCOPOP aims to develop a coherent-capable external laser source to enhance optical interconnects in datacenters, addressing scaling challenges and positioning Europe in a $2.2bn market by 2032.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Photonic molecule microcombsThe project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Highly-Efficient Seeded Frequency Comb Generation on a ChipThe COMBCHIP project aims to create an ultra-efficient, chip-scale optical frequency comb generator using nonlinear AlGaAs waveguides for advanced applications like atomic clocks and spectroscopy. | ERC Proof of... | € 150.000 | 2023 | Details |
Photonic Laser Integration for Metrology and Quantum SystemsLASIQ aims to develop a compact on-chip titanium-sapphire mode-locked laser for low-noise optical frequency combs, enhancing precision spectroscopy and enabling advanced metrology applications. | ERC Starting... | € 1.490.625 | 2023 | Details |
Widely Tunable Soliton Microcomb ChipThe ELASTIC project aims to develop low-power, highly tunable DKS microcombs using AlGaAsOI technology to enhance performance for advanced applications like LiDAR and wavelength-division multiplexing. | ERC Proof of... | € 150.000 | 2025 | Details |
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic SystemsVeritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies. | ERC Proof of... | € 150.000 | 2024 | Details |
Photonic molecule microcombs
The project aims to enhance microcomb technology for optical communications by improving power efficiency and conducting market evaluations to develop a viable business strategy.
Highly-Efficient Seeded Frequency Comb Generation on a Chip
The COMBCHIP project aims to create an ultra-efficient, chip-scale optical frequency comb generator using nonlinear AlGaAs waveguides for advanced applications like atomic clocks and spectroscopy.
Photonic Laser Integration for Metrology and Quantum Systems
LASIQ aims to develop a compact on-chip titanium-sapphire mode-locked laser for low-noise optical frequency combs, enhancing precision spectroscopy and enabling advanced metrology applications.
Widely Tunable Soliton Microcomb Chip
The ELASTIC project aims to develop low-power, highly tunable DKS microcombs using AlGaAsOI technology to enhance performance for advanced applications like LiDAR and wavelength-division multiplexing.
Versatile Integrated Brillouin-Kerr Frequency Combs for On-Chip Photonic Systems
Veritas aims to develop ultra-low noise chip-scale optical frequency combs using Brillouin optomechanics for advanced applications in 6G communications and quantum technologies.