Universal Cardiac Mesoangioblasts for treating DMD Dilated Cardiomyopathy
The project aims to develop immune-privileged cardiac mesoangioblasts that can be converted to cardioblasts for targeted treatment of dilated cardiomyopathy, enhancing heart repair.
Projectdetails
Introduction
Dilated cardiomyopathy (DCM) is the second most common cause of heart failure, currently treated with drugs that delay progress towards heart transplantation. There are currently many attempts to treat DCM with stem cells, their extracellular vesicles, or AAV vectors; however, none have reached efficacy so far.
Background
The applicant has a long track record in cell and gene therapy for muscular dystrophy. He pioneered systemic intra-arterial transplantation of mesoangioblasts (blood vessel-derived progenitors) and, thanks to a previous ERC grant, succeeded in creating immortal, universal donor mesoangioblasts.
Edited cells do not activate an immune response in vitro or in vivo. Muscular dystrophy also affects the heart, causing DCM, but a simple extension of this strategy is problematic since the existence of resident cardiac stem cells is controversial. Additionally, cardiac mesoangioblasts do not spontaneously differentiate into cardiomyocytes.
Current Research
iPS cell-derived cardiac progenitors are promising but have, until now, been used for localized lesions such as myocardial infarcts. To address this problem, we will produce immortal, immune-privileged cardiac mesoangioblasts and will convert them to cardioblasts through in vitro expression of cardiac transcription factors.
Methodology
Since conversion takes about two weeks, we will test different settings to allow cells to home and differentiate in vivo in the areas of damage, characterized by inflammation.
Future Directions
The applicant is in a unique position to test the feasibility of this project for future translation into a novel clinical protocol.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 31-10-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- OSPEDALE SAN RAFFAELE SRLpenvoerder
- DAY ONE SOCIETA A RESPONSABILITA LIMITATA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Creation of a GLP bank of immune-privileged, immortal mesoangioblasts to treat monogenic, recessive diseases of muscle and connective tissueThis project aims to develop a GMP biobank of universal mesoangioblasts for cost-effective, scalable cell therapies targeting muscular and neurological diseases. | ERC Proof of... | € 150.000 | 2023 | Details |
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac RegenerationNovel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches. | ERC Starting... | € 1.592.281 | 2024 | Details |
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regenerationREACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Nanorobotic microgels to control stem cell fateDeveloping innovative microgel technology with nanorobotics to enhance stem cell differentiation for improved cardiac regeneration in myocardial infarction patients. | ERC Starting... | € 1.500.000 | 2024 | Details |
biomimetic engineered chordae tendineae for valve repair and regenerationThis project aims to develop and validate BioChord, a bioengineered regenerative chordae tendineae for mitral valve repair, enhancing durability and promoting tissue restoration. | ERC Proof of... | € 150.000 | 2023 | Details |
Creation of a GLP bank of immune-privileged, immortal mesoangioblasts to treat monogenic, recessive diseases of muscle and connective tissue
This project aims to develop a GMP biobank of universal mesoangioblasts for cost-effective, scalable cell therapies targeting muscular and neurological diseases.
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac Regeneration
Novel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches.
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regeneration
REACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor.
Nanorobotic microgels to control stem cell fate
Developing innovative microgel technology with nanorobotics to enhance stem cell differentiation for improved cardiac regeneration in myocardial infarction patients.
biomimetic engineered chordae tendineae for valve repair and regeneration
This project aims to develop and validate BioChord, a bioengineered regenerative chordae tendineae for mitral valve repair, enhancing durability and promoting tissue restoration.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients. | EIC Pathfinder | € 4.137.668 | 2023 | Details |
Comprehensive Analysis of RBM20-induced Dilated Cardiomyopathies using Omics Approaches and Repair InterventionsCARDIOREPAIR aims to identify and therapeutically target RBM20 mutations in dilated cardiomyopathy using high-throughput genomics and bioengineering to improve heart health outcomes. | EIC Pathfinder | € 4.349.410 | 2023 | Details |
Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic cardiomyopathy diagnosis and treatmentThe project aims to integrate genomics, proteomics, and structural analyses to clarify genotype-phenotype relationships in arrhythmogenic cardiomyopathy, paving the way for novel therapies. | EIC Pathfinder | € 3.740.868 | 2023 | Details |
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical applicationThis project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer. | EIC Pathfinder | € 3.797.562 | 2022 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.
The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients.
Comprehensive Analysis of RBM20-induced Dilated Cardiomyopathies using Omics Approaches and Repair Interventions
CARDIOREPAIR aims to identify and therapeutically target RBM20 mutations in dilated cardiomyopathy using high-throughput genomics and bioengineering to improve heart health outcomes.
Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic cardiomyopathy diagnosis and treatment
The project aims to integrate genomics, proteomics, and structural analyses to clarify genotype-phenotype relationships in arrhythmogenic cardiomyopathy, paving the way for novel therapies.
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application
This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.