Comprehensive Analysis of RBM20-induced Dilated Cardiomyopathies using Omics Approaches and Repair Interventions
CARDIOREPAIR aims to identify and therapeutically target RBM20 mutations in dilated cardiomyopathy using high-throughput genomics and bioengineering to improve heart health outcomes.
Projectdetails
Introduction
In CARDIOREPAIR, we aim to identify and repair disease-causing variants in dilated cardiomyopathy (DCM), the major contributor to heart failure. We focus on the gene RBM20 mutated in patients with a highly penetrant and aggressive form of familial DCM.
Objectives
Objective 1: Characterization of RBM20 Variants
We will create a comprehensive map of all possible RBM20 variants that can cause DCM and develop a therapeutic approach for mutations with the strongest effect size. Enabled by a multitude of new technologies developed in our groups, the primary goal is to characterize the complete spectrum of amino acid mutations in RBM20 by high-throughput saturation mutagenesis screens.
Combined with functional readouts and multi-omics analysis of downstream processes, we will classify and score the pathogenicity of each individual mutant. To this end, we will cover both the known DCM-causing RBM20 variants, as well as those that have not been identified in patients yet.
Each mutant, represented by a typical transcriptomic, proteomic, phosphoproteomic, and microscopic fingerprint, will guide us in finding novel class-specific therapeutic strategies to revert the deviant phenotype back to the healthy state.
Objective 2: Establishing Therapeutic Approaches
For a subset of mutants representing each identified mutation class, we will generate mouse models and investigate changes in heart physiology and ultrastructure linked to the altered ome profile. Our second goal is to establish a class-specific therapeutic approach for the treatment of patients harboring RBM20 mutations.
We will implement our advances in muscle-specific gene editing, focusing on prime editing and nanobody-guided approaches to specifically tackle the mutations leading to RBM20 translocation.
Conclusion
This proposal serves as a blueprint for going from variant identification to therapy in an accelerated fashion by harnessing and combining the power of high-throughput functional genomics and bioengineering and therefore is widely applicable to other cardiovascular diseases (CVD).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 4.349.410 |
Totale projectbegroting | € 4.349.410 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- EUROPEAN MOLECULAR BIOLOGY LABORATORYpenvoerder
- HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients. | EIC Pathfinder | € 4.137.668 | 2023 | Details |
Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic cardiomyopathy diagnosis and treatmentThe project aims to integrate genomics, proteomics, and structural analyses to clarify genotype-phenotype relationships in arrhythmogenic cardiomyopathy, paving the way for novel therapies. | EIC Pathfinder | € 3.740.868 | 2023 | Details |
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial InfarctionTargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation. | EIC Pathfinder | € 3.999.840 | 2023 | Details |
B-specific: B-cell related gene and protein markers with prognostic and therapeutic value for CVDThe B-specific consortium aims to identify and target specific B-cell subsets to develop personalized therapies for atherosclerosis and improve cardiovascular disease risk assessment and management. | EIC Pathfinder | € 4.006.599 | 2023 | Details |
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.
The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients.
Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic cardiomyopathy diagnosis and treatment
The project aims to integrate genomics, proteomics, and structural analyses to clarify genotype-phenotype relationships in arrhythmogenic cardiomyopathy, paving the way for novel therapies.
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial Infarction
TargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation.
B-specific: B-cell related gene and protein markers with prognostic and therapeutic value for CVD
The B-specific consortium aims to identify and target specific B-cell subsets to develop personalized therapies for atherosclerosis and improve cardiovascular disease risk assessment and management.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Universal Cardiac Mesoangioblasts for treating DMD Dilated CardiomyopathyThe project aims to develop immune-privileged cardiac mesoangioblasts that can be converted to cardioblasts for targeted treatment of dilated cardiomyopathy, enhancing heart repair. | ERC Proof of... | € 150.000 | 2025 | Details |
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac RegenerationNovel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches. | ERC Starting... | € 1.592.281 | 2024 | Details |
Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic diseaseDevelop an in vivo prime editing therapy for methylmalonic acidemia to correct genetic mutations in the liver, aiming for safe, efficient, and personalized treatments before irreversible damage occurs. | ERC Starting... | € 1.499.968 | 2022 | Details |
Mechanoregulation of alternative splicing - a multi-omics and single cell approach to improved cardiac functionThis project aims to investigate how mechanoregulation of cardiac splicing affects heart disease by exploring the interaction between the sarcomere and spliceosome for potential therapeutic targets. | ERC Advanced... | € 2.499.999 | 2023 | Details |
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regenerationREACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Universal Cardiac Mesoangioblasts for treating DMD Dilated Cardiomyopathy
The project aims to develop immune-privileged cardiac mesoangioblasts that can be converted to cardioblasts for targeted treatment of dilated cardiomyopathy, enhancing heart repair.
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac Regeneration
Novel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches.
Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic disease
Develop an in vivo prime editing therapy for methylmalonic acidemia to correct genetic mutations in the liver, aiming for safe, efficient, and personalized treatments before irreversible damage occurs.
Mechanoregulation of alternative splicing - a multi-omics and single cell approach to improved cardiac function
This project aims to investigate how mechanoregulation of cardiac splicing affects heart disease by exploring the interaction between the sarcomere and spliceosome for potential therapeutic targets.
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regeneration
REACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor.