Rejuvenation of the Intervertebral Disc Using Self-Healing Biomimetic Extracellular Matrix Biomaterial Tissue Adhesives
This project aims to develop a self-healing biomimetic hydrogel for treating degenerated intervertebral discs, restoring tissue properties and improving patient outcomes in minimally invasive spine treatments.
Projectdetails
Introduction
Lower back pain is a global epidemiological and socioeconomic problem. This project envisions a future whereby patients with degenerated intervertebral discs are injected with a self-healing biomimetic adhesive biomaterial which can restore both the biochemical and biomechanical properties to native tissue levels.
Current Challenges
Current surgical procedures do not replace herniated tissue from the central nucleus pulposus or repair the annulus fibrosus (outer ring of tissue), which can lead to:
- Accelerated degeneration
- Reherniation
- Recurrent pain
Spinal fusion, whereby the compromised or degenerated tissue is removed, and the vertebral segments are fused together, does not restore biomechanical function. This leads to degeneration of adjacent discs with long-term failure rates as high as 40%.
Innovative Solution
My lab has developed a biomimetic injectable hydrogel (iDISC) consisting of the main components (collagen and chondroitin sulfate) of native disc tissue. This hydrogel can be tailored to match the biochemical and biomechanical properties of native disc tissue.
Key Properties of iDISC Hydrogel
- Demonstrates self-healing and adhesive properties to facilitate tissue integration
- Exhibits excellent cell biocompatibility
Project Objectives
The objective of this proposal is to perform:
- In-depth in vitro characterization (WP1)
- Multiaxial biomechanical testing (WP2)
- Pre-clinical evaluation (WP3)
- Marketing and commercialization evaluation (WP4)
Expected Impact
The development of these injectable biomimetic hydrogel systems may facilitate earlier interventions aimed at:
- Halting the degenerative process
- Restoring natural biomechanical function
- Enhancing patient accessibility
- Improving quality of life
- Reducing healthcare expenses and lost productivity in the European Union
The platform technology and knowledge generated through this research are beyond the current state-of-the-art and will provide a significant transformative scientific and clinical step change, opening new horizons in minimally invasive spine treatment strategies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Regenerative Stenting for Osteoporotic Vertebral Fracture RepairRESTORE aims to revolutionize osteoporotic vertebral fracture treatment by using 3D-printed biodegradable stents and thermoresponsive hydrogels for personalized bone regeneration and repair. | ERC Consolid... | € 2.039.473 | 2024 | Details |
Restoring the structural collagen network in the regeneration of cartilageRe-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regenerationNano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment. | ERC Consolid... | € 2.000.000 | 2023 | Details |
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAYThis project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes. | ERC Advanced... | € 2.490.725 | 2023 | Details |
A Digitally-Enabled Electroconductive Patient-Specific Stimulation Implant for Spinal Cord InjuryThis project aims to develop a patient-specific 3D-printed neuromodulation implant to enhance neuron regrowth and restore function in spinal cord injury patients through targeted electrical stimulation. | ERC Proof of... | € 150.000 | 2025 | Details |
Regenerative Stenting for Osteoporotic Vertebral Fracture Repair
RESTORE aims to revolutionize osteoporotic vertebral fracture treatment by using 3D-printed biodegradable stents and thermoresponsive hydrogels for personalized bone regeneration and repair.
Restoring the structural collagen network in the regeneration of cartilage
Re-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability.
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration
Nano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment.
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAY
This project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes.
A Digitally-Enabled Electroconductive Patient-Specific Stimulation Implant for Spinal Cord Injury
This project aims to develop a patient-specific 3D-printed neuromodulation implant to enhance neuron regrowth and restore function in spinal cord injury patients through targeted electrical stimulation.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A novel non-invasive therapy based on injectable viscous gel for restoring the natural biomechanics of the spine and relieving patients from painNC Biomatrix's VitaDisc is a revolutionary non-invasive injectable biomatrix that restores disc function and height, addressing disc degeneration and offering a scalable solution for orthopedic treatments. | EIC Accelerator | € 2.499.999 | 2023 | Details |
NEXT GEN DISC PROSTHESISHet project onderzoekt de technische en economische haalbaarheid van een duurzame dynamische tussenwervelschijf, inclusief materiaalkeuze en marktbenadering. | Mkb-innovati... | € 20.000 | 2022 | Details |
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cordPiezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy. | EIC Pathfinder | € 3.537.120 | 2023 | Details |
Ontwikkeling van een biocompatibele en bio-afbreekbare zenuwcassetteHet project onderzoekt de technische en economische haalbaarheid van een bio-afbreekbare zenuwcassette om pijnlijke neuromen na amputatie te behandelen en mobiliteitsproblemen te verhelpen. | Mkb-innovati... | € 20.000 | 2022 | Details |
DRUG-ELUTING ELECTRICAL IMPLANT TO REPAIR THE SPINAL CORDDREIMS aims to advance a novel drug-eluting electrical implant for spinal cord repair by refining its design and meeting regulatory standards for human therapeutic use. | EIC Transition | € 2.494.542 | 2023 | Details |
A novel non-invasive therapy based on injectable viscous gel for restoring the natural biomechanics of the spine and relieving patients from pain
NC Biomatrix's VitaDisc is a revolutionary non-invasive injectable biomatrix that restores disc function and height, addressing disc degeneration and offering a scalable solution for orthopedic treatments.
NEXT GEN DISC PROSTHESIS
Het project onderzoekt de technische en economische haalbaarheid van een duurzame dynamische tussenwervelschijf, inclusief materiaalkeuze en marktbenadering.
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord
Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.
Ontwikkeling van een biocompatibele en bio-afbreekbare zenuwcassette
Het project onderzoekt de technische en economische haalbaarheid van een bio-afbreekbare zenuwcassette om pijnlijke neuromen na amputatie te behandelen en mobiliteitsproblemen te verhelpen.
DRUG-ELUTING ELECTRICAL IMPLANT TO REPAIR THE SPINAL CORD
DREIMS aims to advance a novel drug-eluting electrical implant for spinal cord repair by refining its design and meeting regulatory standards for human therapeutic use.