ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAY
This project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes.
Projectdetails
Introduction
Both scar formation and restitutio ad integrum during bone regeneration rely on cellular self-organisation that involves cell contraction and fibronectin/collagen formation. This early stage of cellular self-organization is later followed by angiogenesis and mineralisation.
Immune-Mechanical Coupling
Scar-free regeneration of physiological tissue homeostasis requires balanced downregulation of early inflammation; however, little is understood of the immune-mechanical coupling involved. We aim to lay the foundation for reducing patient suffering resulting from scarring by combining two distinct scientific worlds, for which we have been a major driving force: the distinct regulation of local inflammation and the mechano-biology during regeneration. By combining both of our areas of expertise, we aim to harvest the potential of the novel cross-disciplinary field Immuno-Mechanics.
Project Objectives
This ambitious project concentrates on:
- Identifying the different mechanical niches that immune cells experience early in successful healing and non-healing.
- Engineering synthetic niches to control fibroblasts and fibroblast-immune cell interactions to steer cell self-organisation and matrix formation in vitro.
- Verifying that these synthetic niches reprogram hematoma composition and can thus reduce later scarring in vivo.
Feasibility and Innovation
The proposed experiments are challenging as they have never been done this way before, but are feasible since they capitalise on our strengths in osteo-immunology and mechano-biology. Novel technologies will be combined in a unique way to engineer the immune-mechanical cell niche, to passivate activated immune cells, and to reprogramme cell fate.
Expected Outcomes
This will allow us to substantially advance the basic understanding of the interplay between immune cells and their mechanical niche during early regeneration. By harnessing the mechanisms of the immune-mechanics interplay, we will lay the foundation for advancing immune-modulatory therapies to reduce harmful scarring.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.490.725 |
Totale projectbegroting | € 2.490.725 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Restoring the structural collagen network in the regeneration of cartilageRe-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC Advanced... | € 3.475.660 | 2025 | Details |
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisationThis project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies. | ERC Starting... | € 1.499.381 | 2022 | Details |
Dissecting Macrophage Mechanobiology to Engineer Immuno-Regenerative BiomaterialsMACxercise aims to enhance implant integration by investigating how macrophages respond to mechanical cues in bioresorbable biomaterials, fostering advancements in tissue regeneration. | ERC Starting... | € 1.499.950 | 2022 | Details |
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regenerationNano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Restoring the structural collagen network in the regeneration of cartilage
Re-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability.
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation
This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.
Dissecting Macrophage Mechanobiology to Engineer Immuno-Regenerative Biomaterials
MACxercise aims to enhance implant integration by investigating how macrophages respond to mechanical cues in bioresorbable biomaterials, fostering advancements in tissue regeneration.
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration
Nano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cordPiezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy. | EIC Pathfinder | € 3.537.120 | 2023 | Details |
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord
Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.