Regenerative Stenting for Osteoporotic Vertebral Fracture Repair

RESTORE aims to revolutionize osteoporotic vertebral fracture treatment by using 3D-printed biodegradable stents and thermoresponsive hydrogels for personalized bone regeneration and repair.

Subsidie
€ 2.039.473
2024

Projectdetails

Introduction

Osteoporotic vertebral fractures (OVFs) are the most common complication of osteoporosis. Current treatment involves conventional procedures that inject cement into the vertebrae to stabilize the spine and relieve pain. No reparative treatment exists.

Challenges in Current Treatments

Biomaterial-based treatments have had very limited success due to a number of complex challenges, such as:

  • Providing dual therapeutic and mechanical functionalities to meet clinical requirements.

Proposed Solution: RESTORE

Building on a wealth of experience in the area of materials processes, we propose the solution. RESTORE will initially overcome the problems with traditional biomaterials approaches by utilizing recent advances in the area of advanced manufacturing and 3D-printing to engineer a dual component biomaterial platform. This platform will comprise:

  1. A 3D-printed biodegradable stent.
  2. A thermoresponsive hydrogel.

These components will have mechanical properties and bioactive composition tailored to regenerate and repair osteoporotic vertebral bone.

Functionalization of Hydrogel

Following this, and consolidating the research in the applicant’s lab on biomaterial-mediated delivery of therapeutics to enhance bone formation and inhibit resorption, the hydrogel component will be functionalized for the controlled delivery of antioxidant lanthanides. This aims to:

  • Combat increased oxidative stress in the osteoporotic bone microenvironment.
  • Modulate impaired bone remodeling to drive bone regeneration and facilitate repair.

Personalized Medicine Approach

The RESTORE technology has potential for use in a patient-specific personalized medicine format, as the 3D-printing process utilized allows for the stents to be tailored to the patient’s individual vertebra.

Minimally Invasive Treatment Strategy

The hydrogel’s therapeutic load can also be adjusted, offering a potential minimally invasive prophylactic treatment for adjacent diseased vertebrae that do not yet require stenting. This represents a first-of-its-kind prevention strategy for OVFs.

Conclusion

The proposed RESTORE platform is thus a paradigm-shifting disruptive technology that will revolutionize the way damaged osteoporotic vertebrae are treated.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.039.473
Totale projectbegroting€ 2.039.473

Tijdlijn

Startdatum1-6-2024
Einddatum31-5-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • ROYAL COLLEGE OF SURGEONS IN IRELANDpenvoerder

Land(en)

Ireland

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

A 3D-printable biomimetic bone regeneration material

PRIOBONE aims to validate a novel 3D-printable, bone-mimetic material for critical-size bone defects, offering a customizable, cost-effective solution to improve healing outcomes.

€ 150.000
ERC Consolid...

Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration

Nano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment.

€ 2.000.000
ERC Proof of...

Rejuvenation of the Intervertebral Disc Using Self-Healing Biomimetic Extracellular Matrix Biomaterial Tissue Adhesives

This project aims to develop a self-healing biomimetic hydrogel for treating degenerated intervertebral discs, restoring tissue properties and improving patient outcomes in minimally invasive spine treatments.

€ 150.000
ERC Proof of...

BioBone: Bioactive Hydrogel-based Implants to Induce Bone Regeneration

The project aims to enhance bone regeneration after tumor resection by developing 3D-printed porous titanium implants integrated with bioactive materials, improving patient outcomes and reducing complications.

€ 150.000
ERC Proof of...

Bioactive reinforcing bioink for hybrid bioprinting of implantable bone

The project aims to develop 'BioForceInk,' a bioactive bioink for hybrid 3D bioprinting of vascularized bone implants, enhancing mechanical strength and biological functionality for clinical applications.

€ 150.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

AIM+; De ontwikkeling van een poreus, titanium implantaat voor wervelfracturen

Het project ontwikkelt een innovatief, 3D-geprint titanium implantaat voor wervelfracturen dat botgroei bevordert en complicaties van traditionele behandelingen vermindert.

€ 162.175
Mkb-innovati...

Ontwikkelen nieuw middel voor de lokale genezing van botbreuken

Dit project ontwikkelt een nieuwe formulering van microspheres met groeifactoren voor Demineralized Bone Material (DBM) om de effectiviteit bij moeilijk genezende botbreuken te verbeteren.

€ 194.500
EIC Accelerator

A novel non-invasive therapy based on injectable viscous gel for restoring the natural biomechanics of the spine and relieving patients from pain

NC Biomatrix's VitaDisc is a revolutionary non-invasive injectable biomatrix that restores disc function and height, addressing disc degeneration and offering a scalable solution for orthopedic treatments.

€ 2.499.999
Mkb-innovati...

De ontwikkeling van een chirurgisch injectiesysteem voor bioactief calciumfosfaat botcement

Het project ontwikkelt een innovatief injectiesysteem voor een op calciumfosfaat gebaseerd botcement als veilig alternatief voor PMMA bij wervelfracturen, met focus op preklinische testen.

€ 165.608
EIC Accelerator

The Holy Grail in Bone regeneration

GreenBone aims to revolutionize bone grafts with a synthetic Rattan wood-based implant that mimics natural bone, enhancing regeneration and targeting the spinal market by 2025.

€ 2.458.128