PRoduction of an innOvative Millifluidic dEvice for TEsting of new prObiotics
The PROMETEO project aims to develop a millifluidic platform for studying probiotics in the gut microenvironment, enhancing drug development and clinical trial success rates.
Projectdetails
Introduction
Over the last decades, the gut intestinal microflora and other microbial communities present in our body raised a strong interest in the health research domain as it was discovered their possible relation to the pathophysiology of major organs and systems.
Role of Gut Microbiota
Gut epithelial cells, together with our resident microbiota, are involved in the modulation of the host immune system and represent the first line of adsorption of drugs and nutraceuticals.
Probiotics Research
In parallel to microbiota studies, a great effort has been devoted to assess the role of the “probiotics,” live microorganisms that, administered in adequate amounts, are able to confer a benefit to the host health. Probiotics are currently widely used in the prevention/treatment of many diseases.
Challenges in Probiotic Characterization
One critical point that is still an issue in the characterization of new potential probiotics is the difficulty in mimicking with high reliability the gut microenvironment condition using animal models or the current in vitro tools, which are poorly representative of the real in vivo situation.
Need for Alternative Research Tools
This gap motivates the need for the development of alternative research tools, such as fluidic devices, to study the mechanisms at play in the human gut microenvironment and contribute to the success rate of expensive, risky, and time-consuming pre-clinical and clinical trials.
Project Overview
In this frame, our PROMETEO project aims to perform the technical and commercial feasibility of an integrated probiotic/gut epithelium/immune system millifluidic platform, based on a patented organ-on-a-chip technological device, providing the basis for a new generation of innovative solutions for probiotics/drug development.
Consortium Collaboration
PROMETEO will be run by a consortium between Politecnico di Milano and AAT-Advanced Analytical Technologies, a forefront SME specialized in promoting innovation in the probiotic sector, thus combining a solid technological expertise and an in-depth knowledge of the market.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 31-3-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- POLITECNICO DI MILANOpenvoerder
- AAT-ADVANCED ANALYTICAL TECHNOLOGIES-SRL
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Microbiome-based diagnostics and therapeuticsThis project aims to develop microbiome-based diagnostic and therapeutic products by leveraging multi-omics data to identify predictive bacterial strains for disease onset and progression. | ERC Proof of... | € 150.000 | 2023 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC Starting... | € 1.499.980 | 2023 | Details |
Microbial Synthetic in vivo Cell Therapy SystemsThe MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways. | ERC Starting... | € 1.499.938 | 2023 | Details |
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modellingThis project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions. | ERC Starting... | € 1.499.323 | 2024 | Details |
Microbial ecosystems biology in the human gutThis project aims to develop a comprehensive ecosystem model of child gut microbiota using multiomic data to predict and manipulate microbial responses for improved health interventions. | ERC Starting... | € 1.485.413 | 2023 | Details |
Microbiome-based diagnostics and therapeutics
This project aims to develop microbiome-based diagnostic and therapeutic products by leveraging multi-omics data to identify predictive bacterial strains for disease onset and progression.
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Microbial Synthetic in vivo Cell Therapy Systems
The MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways.
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modelling
This project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions.
Microbial ecosystems biology in the human gut
This project aims to develop a comprehensive ecosystem model of child gut microbiota using multiomic data to predict and manipulate microbial responses for improved health interventions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTHiNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment. | EIC Pathfinder | € 3.194.343 | 2025 | Details |
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseasesThe project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications. | EIC Pathfinder | € 3.920.718 | 2024 | Details |
AdDitive mAnufacturing Microfluidica – ADAMPimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen. | Mkb-innovati... | € 20.000 | 2020 | Details |
Sensoriek en Vloeistofadditie MicrobioreactorenDit project ontwikkelt nieuwe sensoriek en vloeistofadditiesystemen voor microbioreactors om de biofarmaceutische ontwikkeling van medicijnen te versnellen en kosten te verlagen. | Mkb-innovati... | € 350.000 | 2015 | Details |
IDEFIX Multiorgan toxicity and efficacy test platformCherry Biotech's IDEFIX project aims to revolutionize preclinical drug testing by developing a customizable organ-on-chip platform that mimics human multiorgan physiology, enhancing efficacy and toxicity predictions. | EIC Transition | € 2.496.073 | 2022 | Details |
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTH
iNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment.
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseases
The project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications.
AdDitive mAnufacturing Microfluidica – ADAM
PimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen.
Sensoriek en Vloeistofadditie Microbioreactoren
Dit project ontwikkelt nieuwe sensoriek en vloeistofadditiesystemen voor microbioreactors om de biofarmaceutische ontwikkeling van medicijnen te versnellen en kosten te verlagen.
IDEFIX Multiorgan toxicity and efficacy test platform
Cherry Biotech's IDEFIX project aims to revolutionize preclinical drug testing by developing a customizable organ-on-chip platform that mimics human multiorgan physiology, enhancing efficacy and toxicity predictions.