Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseases
The project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications.
Projectdetails
Introduction
Glycans, namely human milk oligosaccharides (HMOs), play crucial roles in the functions of the gut, metabolism, and immunity. While HMOs are vital in infant development and exhibit bioactive properties in adults, it is required to analyze and decode their functions in depth.
Project Overview
The current joint project by Inbiose and Utrecht University aims to:
- Identify >5 novel glycosyltransferase enzymes.
- Produce >14 previously inaccessible HMOs.
- Test glycan-microbe interactions in an ex vivo simulated gut microenvironment (SiFR® technology).
- Decode direct and indirect effects of HMOs on the gut barrier in an in vitro cell model.
- Integrate the host-microbe-glycan interplay (“the triangle of sweetness”) in a human-microbial crosstalk (HuMiX) model.
Methodology
Thanks to powerful statistical methods, machine learning, and natural language processing techniques, we envision a thorough understanding of the glycan structure-function relationship and predict their potential applications with stratifications based on:
- Gender
- Diet
- Health conditions
Expected Outcomes
We expect to validate at least one HMO alleviating the impact of inflammation under two diets that is ready for a clinical trial. Cutting-edge Omics methods and data analysis pipelines will allow us to better understand the host-microbe-glycan triangle. This will provide both a wealth of research data and an expanded range of HMOs as research tools and potential therapeutics and/or preventives in human non-communicable diseases and food-related health conditions.
Consortium Strengths
Our unique consortium capacities and a wealth of experience in glycoengineering, biosynthesis, bioinformatics, and noncommunicable chronic disease targeting will enable us to achieve the project goals.
Future Opportunities
The project will create additional opportunities for Inbiose and UU in the further exploration and commercialization of HMOs. We fully expect InteractHoMiG to be a milestone project for glycobiology research and prebiotic/probiotic/postbiotic/synbiotic R&D within the EU and worldwide.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.920.718 |
Totale projectbegroting | € 3.920.718 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT UTRECHTpenvoerder
- INBIOSE
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Inhibitor-Mediated Programming of GlycoformsThe project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions. | EIC Pathfinder | € 2.998.878 | 2025 | Details |
Precision Nutrition to optimize immune response for metabolic healthNUTRIMMUNE investigates the impact of precision nutrition on immune responses in obesity-related NCDs, aiming to establish dietary recommendations through multi-omics analysis and intervention studies. | EIC Pathfinder | € 4.318.432 | 2024 | Details |
Bugs4Urate - Precision Nutrition Strategies for Investigating Probiotic, Diet, Glycan, and Microbiome Factors in Hyperuricemia and Gout PreventionThis project aims to develop a precision nutrition approach using a novel probiotic to lower urate levels and prevent gout by analyzing gut microbiome interactions and individual responses. | EIC Pathfinder | € 3.765.840 | 2024 | Details |
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTHiNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment. | EIC Pathfinder | € 3.194.343 | 2025 | Details |
Inhibitor-Mediated Programming of Glycoforms
The project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions.
Precision Nutrition to optimize immune response for metabolic health
NUTRIMMUNE investigates the impact of precision nutrition on immune responses in obesity-related NCDs, aiming to establish dietary recommendations through multi-omics analysis and intervention studies.
Bugs4Urate - Precision Nutrition Strategies for Investigating Probiotic, Diet, Glycan, and Microbiome Factors in Hyperuricemia and Gout Prevention
This project aims to develop a precision nutrition approach using a novel probiotic to lower urate levels and prevent gout by analyzing gut microbiome interactions and individual responses.
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTH
iNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modellingThis project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions. | ERC Starting... | € 1.499.323 | 2024 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC Starting... | € 1.499.980 | 2023 | Details |
Isotopically labelling of cell surface glycans to illuminate infectious processes at atomic resolutionGlyco13Cell aims to chemically remodel cell surface glycans using NMR probes to enhance understanding of glycan-lectin interactions for developing novel tools in infectious disease treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
Mapping the mycobiomeDit project ontwikkelt en valideert een innovatieve detectiemethode voor het mycobiome in de darm, met als doel de rol ervan in gezondheid en ziekte te begrijpen en therapeutische strategieën te verbeteren. | Mkb-innovati... | € 155.400 | 2015 | Details |
Microbiome-based diagnostics and therapeuticsThis project aims to develop microbiome-based diagnostic and therapeutic products by leveraging multi-omics data to identify predictive bacterial strains for disease onset and progression. | ERC Proof of... | € 150.000 | 2023 | Details |
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modelling
This project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions.
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Isotopically labelling of cell surface glycans to illuminate infectious processes at atomic resolution
Glyco13Cell aims to chemically remodel cell surface glycans using NMR probes to enhance understanding of glycan-lectin interactions for developing novel tools in infectious disease treatment.
Mapping the mycobiome
Dit project ontwikkelt en valideert een innovatieve detectiemethode voor het mycobiome in de darm, met als doel de rol ervan in gezondheid en ziekte te begrijpen en therapeutische strategieën te verbeteren.
Microbiome-based diagnostics and therapeutics
This project aims to develop microbiome-based diagnostic and therapeutic products by leveraging multi-omics data to identify predictive bacterial strains for disease onset and progression.