Precision Diagnostics for Predicting Therapy Response to Bispecific Antibodies
This project aims to develop a precision diagnostic tool that predicts responses to bispecific antibody therapies by mapping single-cell immune interactions in children with acute lymphoblastic leukemia.
Projectdetails
Introduction
Immunotherapies have revolutionized cancer treatment by utilizing the patient's immune system, offering hope for treating a wide range of diseases. However, challenges such as therapy resistance, poor response rates, and high costs remain.
Importance of Precision Diagnostics
Precision diagnostics that accurately identify patients likely to benefit from specific immunotherapies could optimize treatment efficacy, reduce unnecessary treatments, and significantly decrease healthcare expenses.
Limitations of Current Predictive Biomarkers
A major limitation of current predictive biomarkers is their focus on the abundance of individual immune components, such as T cell numbers or specific surface markers, without considering the crucial interactions among immune cells or between immune and cancer cells.
Relevance of Cellular Interactions
Such cellular interactions are particularly relevant for the efficacy of the immunotherapeutic class of bispecific antibodies, which target cancer by facilitating direct interactions between cancer and immune cells. Traditional methods for predicting response to immunotherapies fail to account for the complexity of these cellular interactions.
Project Overview
Our ERC-Starting Grant project introduces an innovative framework for simultaneously mapping single-cell immune landscapes and cellular interactions at a low cost and ultra-high scale.
Application and Findings
Applying this approach to pre-treatment samples from children with acute lymphoblastic leukemia undergoing bispecific antibody therapy has allowed us to identify specific cellular interactions associated with therapy response or failure.
Future Goals
Here we suggest to refine, validate, and prepare the clinical implementation of our approach with the goal to develop a novel precision diagnostic tool that accurately predicts response to bispecific antibodies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 30-6-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bispecific bi-paratopic antibodies for the treatment of cancerThis project aims to develop novel bispecific antibodies to enhance immune response in NSCLC by targeting dual epitopes, potentially improving treatment outcomes for resistant cancer patients. | ERC Proof of... | € 150.000 | 2025 | Details |
The development of a predictive biomarker for immunotherapy outcome based on flow cytometry testThe project aims to develop a flow cytometry-based predictive biomarker for immunotherapy response, enhancing personalized treatment and aiding pharmaceutical R&D through the detection of immunotherapy-responsiveness cells (IRCs). | ERC Proof of... | € 150.000 | 2022 | Details |
Nano-assisted digitalizing of cancer phenotyping for immunotherapyThe ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes. | ERC Consolid... | € 1.993.875 | 2023 | Details |
EXPANDing Immune Cells and their Tumor Antigens during checkpoint immunotherapyEXPAND IT aims to uncover the mechanisms of T-cell and B-cell expansion in the tumor microenvironment during cancer immunotherapy to enhance patient responses and develop new therapies. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Polyclonal anti-tumor immunity by engineered human T cellsThis project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes. | ERC Starting... | € 1.812.500 | 2022 | Details |
Bispecific bi-paratopic antibodies for the treatment of cancer
This project aims to develop novel bispecific antibodies to enhance immune response in NSCLC by targeting dual epitopes, potentially improving treatment outcomes for resistant cancer patients.
The development of a predictive biomarker for immunotherapy outcome based on flow cytometry test
The project aims to develop a flow cytometry-based predictive biomarker for immunotherapy response, enhancing personalized treatment and aiding pharmaceutical R&D through the detection of immunotherapy-responsiveness cells (IRCs).
Nano-assisted digitalizing of cancer phenotyping for immunotherapy
The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.
EXPANDing Immune Cells and their Tumor Antigens during checkpoint immunotherapy
EXPAND IT aims to uncover the mechanisms of T-cell and B-cell expansion in the tumor microenvironment during cancer immunotherapy to enhance patient responses and develop new therapies.
Polyclonal anti-tumor immunity by engineered human T cells
This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors. | EIC Accelerator | € 2.496.112 | 2024 | Details |
Trial BoosterVitroScan en Imuno ontwikkelen een screeningsplatform om de effectiviteit van immuuntherapie bij blaaskanker te voorspellen, waardoor patiëntselectie voor klinische studies verbetert. | Mkb-innovati... | € 347.410 | 2022 | Details |
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samplesThe NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs. | EIC Transition | € 2.499.999 | 2025 | Details |
PREDICT - Towards a PREDICTable combination therapyHet project richt zich op het ontwikkelen van een datagestuurde combinatie van immuunsuppressie en NK-celtherapie om de uitkomst van kankerbehandelingen te voorspellen en te verbeteren. | Mkb-innovati... | € 165.355 | 2018 | Details |
canceR agnOstic immUnoTherapy predIctioN blood-tEstPamGene's IOpener is an innovative diagnostic platform that predicts immune checkpoint inhibitor response from a blood sample, aiming to enhance precision medicine in cancer treatment. | EIC Accelerator | € 2.500.000 | 2023 | Details |
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.
The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors.
Trial Booster
VitroScan en Imuno ontwikkelen een screeningsplatform om de effectiviteit van immuuntherapie bij blaaskanker te voorspellen, waardoor patiëntselectie voor klinische studies verbetert.
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samples
The NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs.
PREDICT - Towards a PREDICTable combination therapy
Het project richt zich op het ontwikkelen van een datagestuurde combinatie van immuunsuppressie en NK-celtherapie om de uitkomst van kankerbehandelingen te voorspellen en te verbeteren.
canceR agnOstic immUnoTherapy predIctioN blood-tEst
PamGene's IOpener is an innovative diagnostic platform that predicts immune checkpoint inhibitor response from a blood sample, aiming to enhance precision medicine in cancer treatment.