Bispecific bi-paratopic antibodies for the treatment of cancer
This project aims to develop novel bispecific antibodies to enhance immune response in NSCLC by targeting dual epitopes, potentially improving treatment outcomes for resistant cancer patients.
Projectdetails
Introduction
Immune checkpoint inhibitors have revolutionized cancer therapy, yet the majority of patients do not respond to current treatments, such as PD-1/PD-L1 blockade. In non-small cell lung cancer (NSCLC), over 70% of patients experience immune evasion mechanisms that prevent effective immune activation.
Mechanisms of Immune Evasion
One such mechanism involves the overexpression of glycans on tumor cells, which can modulate immune responses.
Project Proposal
In this project, we propose to develop novel bispecific bi-paratopic antibodies that simultaneously target two distinct epitopes of the target. This innovative approach is designed to provide a more comprehensive blockade of immune-suppressive functions by dual engagement of the receptor.
Engineering and Optimization
Our bispecific antibodies will be engineered and optimized to target different epitopes, enhancing their ability to restore immune function. The project will involve:
- Engineering of the bispecific antibodies
- Structural characterization
- Functional validation of the antibodies
- Preclinical efficacy studies in NSCLC models
Potential Impact
By this approach, these antibodies have the potential to overcome the limitations of existing immunotherapies, offering a new therapeutic option for cancer patients who are resistant to current treatments.
Commercialization Strategy
In addition to the scientific development, this ERC PoC project is designed to develop a robust commercialization strategy, with the potential for patent filings and engagement with pharmaceutical partners.
Vision
Our vision is to bring these bispecific antibodies to the clinic, ultimately aiming to improve outcomes for patients with NSCLC and other cancers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 30-9-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIASpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune responseThis project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer. | ERC Proof of... | € 150.000 | 2025 | Details |
Precision Diagnostics for Predicting Therapy Response to Bispecific AntibodiesThis project aims to develop a precision diagnostic tool that predicts responses to bispecific antibody therapies by mapping single-cell immune interactions in children with acute lymphoblastic leukemia. | ERC Proof of... | € 150.000 | 2025 | Details |
Immune Synapse Engagement as a Novel Approach for Cancer ImmunotherapyThe project aims to develop bi- and multi-specific antibodies that enhance immune cell interactions to improve the efficacy of cancer immunotherapy by targeting T-cell-dendritic cell synapses. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Allosteric modulation of immune checkpoint complexes as a new mode of therapeutic intervention in immunotherapyThe project aims to develop novel Nanobodies as safe and effective modulators of immune checkpoint complexes for cancer and autoimmune diseases, potentially outperforming current therapies. | ERC Advanced... | € 2.499.674 | 2024 | Details |
Engineering B cells to fight cancerThis project aims to develop a novel cancer immunotherapy using engineered B cells to enhance anti-tumor responses through targeted gene integration and localized immune activation. | ERC Consolid... | € 1.996.250 | 2022 | Details |
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response
This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.
Precision Diagnostics for Predicting Therapy Response to Bispecific Antibodies
This project aims to develop a precision diagnostic tool that predicts responses to bispecific antibody therapies by mapping single-cell immune interactions in children with acute lymphoblastic leukemia.
Immune Synapse Engagement as a Novel Approach for Cancer Immunotherapy
The project aims to develop bi- and multi-specific antibodies that enhance immune cell interactions to improve the efficacy of cancer immunotherapy by targeting T-cell-dendritic cell synapses.
Allosteric modulation of immune checkpoint complexes as a new mode of therapeutic intervention in immunotherapy
The project aims to develop novel Nanobodies as safe and effective modulators of immune checkpoint complexes for cancer and autoimmune diseases, potentially outperforming current therapies.
Engineering B cells to fight cancer
This project aims to develop a novel cancer immunotherapy using engineered B cells to enhance anti-tumor responses through targeted gene integration and localized immune activation.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance. | EIC Transition | € 1.881.875 | 2023 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
PRO CellecTPan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren. | Mkb-innovati... | € 20.000 | 2021 | Details |
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors. | EIC Accelerator | € 2.496.112 | 2024 | Details |
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineeringThe project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer. | EIC Accelerator | € 2.434.790 | 2025 | Details |
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)
Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance.
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
PRO CellecT
Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.
The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors.
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineering
The project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer.