Novel Probes for Scanning Probe Microscopy
The project aims to enhance scanning probe microscopy probes by developing new designs, collecting performance data, and demonstrating scalable manufacturing for advanced nanoscience applications.
Projectdetails
Introduction
For more than 30 years, the platforms based on scanning probe microscopy (SPM) have contributed enormously to the progress of nanoscience and nanotechnology. They have become a fundamental tool for specialists spanning a wide range of research fields, such as materials science, nanoelectronics, and biophysics.
Versatility of SPM Probes
The versatility of these multipurpose microscopes is bestowed by the extended variety of probes available in the market, which are used to interact with the nanoscale.
Project Objectives
For this proof of concept grant, we will focus on the following objectives:
- Further develop our probes.
- Collect extended data sets of tip performance.
- Propose scalable manufacturing processes.
- Demonstrate further capabilities of this new generation of SPM probes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 29-2-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ECOLE POLYTECHNIQUEpenvoerder
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Scanning probe microscopy in high vectorial magnetic fields: New device for imaging quantum materialsThe VectorFieldImaging project aims to develop a cost-effective method to adjust the magnetic field direction in scanning tunneling microscopes, enhancing studies of quantum materials at high fields. | ERC Proof of... | € 150.000 | 2022 | Details |
Single-Molecule Acousto-Photonic NanofluidicsSIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection. | ERC Starting... | € 1.499.395 | 2022 | Details |
Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon SourcesThe project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials. | ERC Proof of... | € 150.000 | 2024 | Details |
The Quantum Twisting Microscope - revolutionizing quantum matter imagingThe Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control. | ERC Advanced... | € 3.344.995 | 2023 | Details |
Atomic scale coherent manipulation of the electron spin in semiconductorsOneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications. | ERC Starting... | € 1.913.122 | 2024 | Details |
Scanning probe microscopy in high vectorial magnetic fields: New device for imaging quantum materials
The VectorFieldImaging project aims to develop a cost-effective method to adjust the magnetic field direction in scanning tunneling microscopes, enhancing studies of quantum materials at high fields.
Single-Molecule Acousto-Photonic Nanofluidics
SIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection.
Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon Sources
The project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials.
The Quantum Twisting Microscope - revolutionizing quantum matter imaging
The Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control.
Atomic scale coherent manipulation of the electron spin in semiconductors
OneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
Haalbaarheidsstudie naar ontwikkeling Scanning Shapiro MicroscopeQuantamap ontwikkelt een innovatieve Scanning Shapiro Microscope om de microgolfintensiteit op nanoschaal te meten, ter ondersteuning van de groei van quantumcomputers en qubits. | Mkb-innovati... | € 20.000 | 2023 | Details |
The world’s most sensitive absorption microscopeQlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027. | EIC Transition | € 2.480.000 | 2024 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
Haalbaarheidsstudie naar ontwikkeling Scanning Shapiro Microscope
Quantamap ontwikkelt een innovatieve Scanning Shapiro Microscope om de microgolfintensiteit op nanoschaal te meten, ter ondersteuning van de groei van quantumcomputers en qubits.
The world’s most sensitive absorption microscope
QlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027.