nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargo
The project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods.
Projectdetails
Introduction
Cell-specific cargo delivery is a key remaining problem in the field of RNA-based therapeutics. Thus far, delivery has relied on lipid nanoparticles (LNPs) which encapsulate RNA with high efficiency, but broadly lack in specificity.
Current Delivery Methods
Viral vectors are currently the only FDA approved tissue-specific cargo delivery option, with specificity being the result of manipulation of outer capsid proteins. However, viral systems are also associated with drawbacks such as:
- Oncogenicity
- Antigenicity
- Pre-existing immunity to the viral carrier itself
The ideal carrier system would involve LNP-efficient cargo encapsulation together with specific targeting in the absence of oncogenicity or immunogenicity.
Development of nanoVAST
DKFZ and Panosome GmbH have together developed this exact particle – the nanoVAST: a patented vesicular phospholipid bilayer densely decorated with a single protein that can be fused to a targeting molecule of interest through specific, efficient, and separately patented chemistry.
Importantly, the attachment of the targeting component relies on a coupling of the vesicle to the targeting moiety, rather than a genetic manipulation of the carrier itself (as is the case with viral vectors), giving this system an unparalleled level of versatility.
Advantages of the nanoVAST System
Additionally, our vesicular system is inherently fusogenic with target membranes, thus permitting cargo delivery directly to the cytoplasm and avoiding the reliance on the incredibly inefficient “endosomal escape” mechanism that plagues LNPs. It is estimated that conventional LNPs only deliver approximately 1% or less of their payload into the cytoplasm.
Project Objectives
This ERC PoC proposes to use the nanoVAST particle to:
a. Deliver specific RNA cargo to CD19+ B cells;
b. Transport within the cells this cargo to the endogenous RNA editing machinery; and
c. Functionally alter the surface of the targeted cells.
Through the PoC, we aim to accelerate nanoVAST, our precision payload delivery system, towards direct clinical applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERGpenvoerder
- PANOSOME GMBH
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug deliveryThis project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks. | ERC Proof of... | € 150.000 | 2023 | Details |
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapiesThis project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations. | ERC Starting... | € 1.844.248 | 2024 | Details |
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cellsPOLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases. | ERC Proof of... | € 150.000 | 2023 | Details |
Unravelling extracellular vesicle heterogeneity to inspire improved therapeutic RNA delivery systemsUNRAVEL aims to characterize extracellular vesicle subpopulations for enhanced RNA delivery, leading to the development of biomimetic synthetic RNA delivery systems to improve therapeutic applications. | ERC Consolid... | € 2.000.000 | 2025 | Details |
LNP-DECODE: Broadening the therapeutic window of LNP-based vaccinationThis project aims to explore lipid nanoparticles' potential to induce immune tolerance against allergens and auto-antigens by incorporating peptide cargo and monitoring dendritic cell responses. | ERC Proof of... | € 150.000 | 2024 | Details |
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug delivery
This project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks.
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapies
This project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations.
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cells
POLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases.
Unravelling extracellular vesicle heterogeneity to inspire improved therapeutic RNA delivery systems
UNRAVEL aims to characterize extracellular vesicle subpopulations for enhanced RNA delivery, leading to the development of biomimetic synthetic RNA delivery systems to improve therapeutic applications.
LNP-DECODE: Broadening the therapeutic window of LNP-based vaccination
This project aims to explore lipid nanoparticles' potential to induce immune tolerance against allergens and auto-antigens by incorporating peptide cargo and monitoring dendritic cell responses.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing systemThe NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases. | EIC Pathfinder | € 2.988.377 | 2023 | Details |
TraffikGene-Tx: Targeted Peptide Carriers for RNA DeliveryTraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs. | EIC Transition | € 2.498.963 | 2023 | Details |
New Prime Editing and non-viral delivery strategies for Gene TherapyThis project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders. | EIC Pathfinder | € 4.406.097 | 2022 | Details |
Next-generation AAV vectors for liver-directed gene therapyAAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients. | EIC Pathfinder | € 4.500.000 | 2022 | Details |
NPC Auto-ImmuunDit project ontwikkelt een innovatieve analysetechniek om de effectiviteit van NanoParticle Conjugates voor de behandeling van auto-immuunziekten te onderzoeken via bloedanalyse. | Mkb-innovati... | € 20.000 | 2020 | Details |
A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system
The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.
TraffikGene-Tx: Targeted Peptide Carriers for RNA Delivery
TraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs.
New Prime Editing and non-viral delivery strategies for Gene Therapy
This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.
Next-generation AAV vectors for liver-directed gene therapy
AAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients.
NPC Auto-Immuun
Dit project ontwikkelt een innovatieve analysetechniek om de effectiviteit van NanoParticle Conjugates voor de behandeling van auto-immuunziekten te onderzoeken via bloedanalyse.