LNP-DECODE: Broadening the therapeutic window of LNP-based vaccination
This project aims to explore lipid nanoparticles' potential to induce immune tolerance against allergens and auto-antigens by incorporating peptide cargo and monitoring dendritic cell responses.
Projectdetails
Introduction
The recent success of ionizable lipid nanoparticles (iLNPs) as vehicles for mRNA (mRNA-iLNP) as a safe and highly effective vaccine in the protection against SARS-CoV-2 pushed the lipid nanoparticle technology to the forefront of medicine and launched worldwide interest in their potential as a therapeutic vaccine against numerous pathogens or tumor antigens.
Current Understanding
Still, their mode of action remains largely a black box. One of the most remarkable properties of mRNA-LNPs is that they do not require any additional adjuvant, explaining for a large part their success. Current belief posits that their adjuvant activity originates from the ionizable lipids without any need for mRNA components.
Challenging Existing Beliefs
Our data challenge this belief as we found that empty, non-mRNA containing LNPs induce homeostatic, not immunogenic dendritic cell (DC) maturation. This observation has far-stretching clinical implications as it suggests that if one finds a reliable manner to incorporate antigens in a non-immunogenic fashion in LNPs, i.e. as peptides or non-immunogenic mRNA molecules, we can broaden the scope of LNPs from inducers of protective immunity to inducers of tolerance.
Project Goals
The current project aims to explore this idea by testing the induction of tolerance against allergens and auto-immune antigens incorporated as peptide cargo within LNPs.
Development of Tools
In addition, we developed a unique toolbox with a set of biomarkers that distinguish tolerogenic from immunogenic mature DCs.
Validation and Monitoring
In the current project, we want to validate whether we can use these biomarkers to monitor in vivo the effect of different types of LNPs on DCs and predict their capability to induce tolerance or immunity.
Expected Impact
We believe that these findings will be highly valuable to help rational design of the future generation of LNPs, guarantee a safer use in the clinic, and potentially broaden their scope to inducers of tolerance.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 30-11-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- VIB VZWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapiesThis project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations. | ERC Starting... | € 1.844.248 | 2024 | Details |
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug deliveryThis project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks. | ERC Proof of... | € 150.000 | 2023 | Details |
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargoThe project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods. | ERC Proof of... | € 150.000 | 2022 | Details |
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cellsPOLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases. | ERC Proof of... | € 150.000 | 2023 | Details |
RNA-based cancer ImmunotheraPeutics to Enhance CROssPrimmingThe RIPECROP project aims to enhance cancer immunotherapy by developing mRNA-based agents that boost cDC1 cells in tumors to improve anti-tumor T-cell crosspriming. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapies
This project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations.
Novel functionalization of liposomic nano-vehicles for strongly-enhanced drug delivery
This project aims to innovate lipid-based drug delivery by developing novel functionalization methods to enhance therapeutic efficiency while overcoming PEGylation drawbacks.
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargo
The project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods.
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cells
POLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases.
RNA-based cancer ImmunotheraPeutics to Enhance CROssPrimming
The RIPECROP project aims to enhance cancer immunotherapy by developing mRNA-based agents that boost cDC1 cells in tumors to improve anti-tumor T-cell crosspriming.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
NPC Auto-ImmuunDit project ontwikkelt een innovatieve analysetechniek om de effectiviteit van NanoParticle Conjugates voor de behandeling van auto-immuunziekten te onderzoeken via bloedanalyse. | Mkb-innovati... | € 20.000 | 2020 | Details |
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance. | EIC Transition | € 1.881.875 | 2023 | Details |
Revolutionizing Autoimmune Therapy: Antigen Specific Immunotherapy for Rheumatoid Arthritis with Virus NanoparticlesDiamante Società Benefit srl aims to develop a novel treatment for autoimmune diseases using virus nanoparticles to restore immune tolerance, reducing side effects compared to current therapies. | EIC Accelerator | € 2.499.999 | 2025 | Details |
TraffikGene-Tx: Targeted Peptide Carriers for RNA DeliveryTraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs. | EIC Transition | € 2.498.963 | 2023 | Details |
NPC Auto-Immuun
Dit project ontwikkelt een innovatieve analysetechniek om de effectiviteit van NanoParticle Conjugates voor de behandeling van auto-immuunziekten te onderzoeken via bloedanalyse.
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)
Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance.
Revolutionizing Autoimmune Therapy: Antigen Specific Immunotherapy for Rheumatoid Arthritis with Virus Nanoparticles
Diamante Società Benefit srl aims to develop a novel treatment for autoimmune diseases using virus nanoparticles to restore immune tolerance, reducing side effects compared to current therapies.
TraffikGene-Tx: Targeted Peptide Carriers for RNA Delivery
TraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs.