Metal-Organic Framework Field-Effect Transistor Arrays for Chemical Sensing
The MOFFET project aims to develop a novel VOC sensor by integrating metal-organic frameworks with transistor technology for improved detection in medical diagnostics, food freshness, and air quality monitoring.
Projectdetails
Introduction
Detecting volatile organic compounds (VOCs) at low concentrations is an important but challenging task with a range of applications, including checking food freshness, monitoring indoor air quality, and diagnosing lung conditions through breath analysis. In all of these areas, high-performance yet compact VOC sensors are needed.
Challenges with Current Sensors
While compact VOC sensors exist, they suffer from:
- Limited lifetimes
- Low selectivities
- Often produce questionable data
The Role of Metal-Organic Frameworks
Metal-organic frameworks (MOFs) with pores of molecular dimensions are excellent materials to adsorb VOC analytes from air, even at very low concentrations.
Project Goals
The MOFFET project targets the integration of MOFs with transistor technology to realize a novel type of VOC sensor. In addition, the modular nature of MOFs and microfabrication will be combined to realize an ‘electronic nose’ demonstrator for the selective detection in mixtures of VOCs.
Expected Outcomes
If successful, the project will contribute to:
- Novel, non-invasive medical diagnostics
- Checking food freshness
- Monitoring air quality
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 30-9-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
- INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Metal-Organic-Framework Kinetic Array for Diabetes DetectionThis project aims to develop a novel sensor using metal-organic frameworks to selectively detect volatile organic compounds in breath for non-invasive diabetes diagnosis. | ERC Proof of... | € 150.000 | 2024 | Details |
Kinetic selectivity in molecular sieve sensorsKISSIES aims to develop a novel sensor technology using tailored metal-organic frameworks to selectively detect volatile organic compounds in complex environments, enhancing applications in health and safety. | ERC Consolid... | € 2.480.500 | 2022 | Details |
Atomistic Modeling of Advanced Porous Materials for Energy, Environment, and Biomedical ApplicationsThis project aims to develop a materials intelligence ecosystem to assess guest storage and transport properties of millions of MOFs, enhancing their applications in energy, environmental, and biomedical fields. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Decoding the Mechanisms Underlying Metal-Organic Frameworks Self-AssemblyMAGNIFY aims to develop a multi-scale computational methodology to decode MOF self-assembly mechanisms, enabling efficient synthesis and rational design of new materials. | ERC Starting... | € 1.340.375 | 2022 | Details |
Titanium-organic framework membranes for CO2 capturePORECAPTURE aims to commercialize the MUV-10 titanium-organic framework for energy-efficient CO2 capture by optimizing production, developing membranes, and establishing a business model. | ERC Proof of... | € 150.000 | 2023 | Details |
Metal-Organic-Framework Kinetic Array for Diabetes Detection
This project aims to develop a novel sensor using metal-organic frameworks to selectively detect volatile organic compounds in breath for non-invasive diabetes diagnosis.
Kinetic selectivity in molecular sieve sensors
KISSIES aims to develop a novel sensor technology using tailored metal-organic frameworks to selectively detect volatile organic compounds in complex environments, enhancing applications in health and safety.
Atomistic Modeling of Advanced Porous Materials for Energy, Environment, and Biomedical Applications
This project aims to develop a materials intelligence ecosystem to assess guest storage and transport properties of millions of MOFs, enhancing their applications in energy, environmental, and biomedical fields.
Decoding the Mechanisms Underlying Metal-Organic Frameworks Self-Assembly
MAGNIFY aims to develop a multi-scale computational methodology to decode MOF self-assembly mechanisms, enabling efficient synthesis and rational design of new materials.
Titanium-organic framework membranes for CO2 capture
PORECAPTURE aims to commercialize the MUV-10 titanium-organic framework for energy-efficient CO2 capture by optimizing production, developing membranes, and establishing a business model.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Towards the ultimate breath analysis -based continuous healthcareVOCORDER aims to develop a compact, efficient breath analysis device using advanced laser technology and AI to provide holistic health monitoring seamlessly integrated into daily life. | EIC Pathfinder | € 3.873.437 | 2023 | Details |
Real time Liver disease early diagnosis through exhaled Volatile Organic Compounds sensingDiaNose aims to revolutionize NAFLD diagnostics with a cost-effective, hand-held device using AI to classify breath chemical signatures, achieving >90% accuracy for improved patient outcomes. | EIC Transition | € 2.499.875 | 2024 | Details |
FantastiCOF: Fabricating and Implementing Exotic Materials from Covalent Organic FrameworksFantastiCOF aims to revolutionize superconducting electronics by developing low-noise Josephson Junctions using novel crystalline moir materials, enhancing performance in various high-tech applications. | EIC Pathfinder | € 2.383.360 | 2022 | Details |
Extractie van VOC’s uit (bio)gasDMT ontwikkelt een innovatieve procestechnologie voor effectieve verwijdering en terugwinning van waardevolle VOC's uit biogas, ter bevordering van de circulaire economie en vermindering van broeikasgasuitstoot. | Mkb-innovati... | € 20.000 | 2021 | Details |
Smart Electronic Olfaction for Body Odor DiagnosticsSMELLODI aims to digitize and synthesize olfactory information for remote disease diagnostics and assist individuals with olfactory disorders using advanced sensor technology and machine learning. | EIC Pathfinder | € 3.263.781 | 2022 | Details |
Towards the ultimate breath analysis -based continuous healthcare
VOCORDER aims to develop a compact, efficient breath analysis device using advanced laser technology and AI to provide holistic health monitoring seamlessly integrated into daily life.
Real time Liver disease early diagnosis through exhaled Volatile Organic Compounds sensing
DiaNose aims to revolutionize NAFLD diagnostics with a cost-effective, hand-held device using AI to classify breath chemical signatures, achieving >90% accuracy for improved patient outcomes.
FantastiCOF: Fabricating and Implementing Exotic Materials from Covalent Organic Frameworks
FantastiCOF aims to revolutionize superconducting electronics by developing low-noise Josephson Junctions using novel crystalline moir materials, enhancing performance in various high-tech applications.
Extractie van VOC’s uit (bio)gas
DMT ontwikkelt een innovatieve procestechnologie voor effectieve verwijdering en terugwinning van waardevolle VOC's uit biogas, ter bevordering van de circulaire economie en vermindering van broeikasgasuitstoot.
Smart Electronic Olfaction for Body Odor Diagnostics
SMELLODI aims to digitize and synthesize olfactory information for remote disease diagnostics and assist individuals with olfactory disorders using advanced sensor technology and machine learning.