Titanium-organic framework membranes for CO2 capture
PORECAPTURE aims to commercialize the MUV-10 titanium-organic framework for energy-efficient CO2 capture by optimizing production, developing membranes, and establishing a business model.
Projectdetails
Introduction
The continued growth in emissions of greenhouse gases in the atmosphere is a pressing issue for our society. The urgent need for strategies to reduce greenhouse gas concentrations has aroused international action from governments. Carbon capture and storage technologies (CCS) have been considered a key solution to reverse the current CO2 trend because they can mitigate, or at least delay, the alarming greenhouse effects.
Limitations of Current Solutions
However, the most effective solution for post-combustion CO2 remains still the chemisorption in aqueous solutions of alkanolamines despite limitations such as:
- Low selectivity
- Corrosiveness
- High energy requirement for operation and maintenance
Advantages of Membrane Technology
Membranes are arguably an attractive technology for CO2 removal from mixed, humid gases as it is a relatively simple technology that can be easily replaced and requires minimum investment and operation costs. In this regard, mixed-matrix membranes incorporating Metal-Organic Frameworks (MOFs) as crystalline components are an excellent alternative to overcome two of the major limitations of polymer-based membranes: swelling and low selectivity towards CO2.
Development of MUV-10
Among the families of titanium-organic frameworks developed in the ERC Stg grant Chem-fs-MOF (714122), one of our patented materials (MUV-10) represents a significant improvement or meets the specifications of benchmark materials in terms of key properties relevant to CO2 capture in wet conditions, such as:
- Gravimetric uptake
- Adsorbate selectivity
- Energy efficient sorbent regeneration
- Recyclability in humid environments
Project Goals
With PORECAPTURE, we intend to explore the commercial potential of this material across three main goals that will include:
- Optimizing its production at multi-gram scale
- Fabricating a new generation of membranes for energy efficient CO2 capture that will be tested in operational environments
- Defining an optimal business model strategy that will include validating our know-how with licensors of CCS technologies
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 31-3-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAT DE VALENCIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Atomistic Modeling of Advanced Porous Materials for Energy, Environment, and Biomedical ApplicationsThis project aims to develop a materials intelligence ecosystem to assess guest storage and transport properties of millions of MOFs, enhancing their applications in energy, environmental, and biomedical fields. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Metal-Organic Framework Field-Effect Transistor Arrays for Chemical SensingThe MOFFET project aims to develop a novel VOC sensor by integrating metal-organic frameworks with transistor technology for improved detection in medical diagnostics, food freshness, and air quality monitoring. | ERC Proof of... | € 150.000 | 2022 | Details |
Porous poly(ionic liquid)s for CO2 capture and simultaneous conversion under ambient conditionsDevelop metal-free dual-function porous poly(ionic liquid)s to efficiently capture and convert CO2 into cyclic carbonates, advancing cost-effective carbon capture and utilization technologies. | ERC Consolid... | € 1.999.444 | 2022 | Details |
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking waterThis project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Membrane Electrode Assembly for the High Pressure Electrochemical Conversion of CO2 to C2H4The HIPCEO2 project aims to develop a high-pressure electrolyzer prototype using novel Cu-based catalysts for efficient CO2 conversion to ethylene, enhancing selectivity and stability. | ERC Proof of... | € 150.000 | 2022 | Details |
Atomistic Modeling of Advanced Porous Materials for Energy, Environment, and Biomedical Applications
This project aims to develop a materials intelligence ecosystem to assess guest storage and transport properties of millions of MOFs, enhancing their applications in energy, environmental, and biomedical fields.
Metal-Organic Framework Field-Effect Transistor Arrays for Chemical Sensing
The MOFFET project aims to develop a novel VOC sensor by integrating metal-organic frameworks with transistor technology for improved detection in medical diagnostics, food freshness, and air quality monitoring.
Porous poly(ionic liquid)s for CO2 capture and simultaneous conversion under ambient conditions
Develop metal-free dual-function porous poly(ionic liquid)s to efficiently capture and convert CO2 into cyclic carbonates, advancing cost-effective carbon capture and utilization technologies.
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking water
This project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste.
Membrane Electrode Assembly for the High Pressure Electrochemical Conversion of CO2 to C2H4
The HIPCEO2 project aims to develop a high-pressure electrolyzer prototype using novel Cu-based catalysts for efficient CO2 conversion to ethylene, enhancing selectivity and stability.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Double-Active Membranes for a sustainable CO2 cycleDAM4CO2 aims to develop innovative double active membranes for efficient CO2 capture and conversion into renewable C4+ fuels, promoting a sustainable net-zero carbon cycle. | EIC Pathfinder | € 2.975.275 | 2023 | Details |
CO2-afvang uit luchtHet project test holle vezel membraanmodules voor CO2-afvang uit lucht om inzicht te krijgen in de kosten van het proces. | Mkb-innovati... | € 20.000 | 2020 | Details |
Regeneratie Absorptiemiddel voor CO2 afvang uit de luchtDit project onderzoekt de haalbaarheid van membraan-elektrolyse voor de regeneratie van CO2-absorptiemiddelen, met als doel de effectiviteit en kosten van het proces te evalueren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassenDit project onderzoekt de haalbaarheid van gasadsorptie in poreuze materialen voor CO2, waterstof en giftige gassen via simulatiemodellen. | Mkb-innovati... | € 20.000 | 2023 | Details |
SAS CO2 absorptie uit rookgas of luchtHet project richt zich op het ontwerpen van een reactor voor CO2-afvang met poreuze deeltjes en amines, gericht op energie-efficiëntie en optimalisatie van procesparameters. | Mkb-innovati... | € 54.250 | 2015 | Details |
Double-Active Membranes for a sustainable CO2 cycle
DAM4CO2 aims to develop innovative double active membranes for efficient CO2 capture and conversion into renewable C4+ fuels, promoting a sustainable net-zero carbon cycle.
CO2-afvang uit lucht
Het project test holle vezel membraanmodules voor CO2-afvang uit lucht om inzicht te krijgen in de kosten van het proces.
Regeneratie Absorptiemiddel voor CO2 afvang uit de lucht
Dit project onderzoekt de haalbaarheid van membraan-elektrolyse voor de regeneratie van CO2-absorptiemiddelen, met als doel de effectiviteit en kosten van het proces te evalueren.
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassen
Dit project onderzoekt de haalbaarheid van gasadsorptie in poreuze materialen voor CO2, waterstof en giftige gassen via simulatiemodellen.
SAS CO2 absorptie uit rookgas of lucht
Het project richt zich op het ontwerpen van een reactor voor CO2-afvang met poreuze deeltjes en amines, gericht op energie-efficiëntie en optimalisatie van procesparameters.