Harnessing a novel CRISPR nuclease for programmable counterselection in human cells

This project aims to enhance CRISPR genome editing efficiency by developing a programmable counter-selection mechanism to eliminate unedited cells, thereby reducing screening burdens in various applications.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

CRISPR technologies have revolutionized genome editing in medicine, agriculture, biotechnology, and life-sciences research with their ability to generate virtually any DNA edit at any genomic site in any organism. However, editing frequencies can be restrictively low, requiring extensive screening to identify cells harboring desired edits.

Problem Statement

What remains elusive is a way to greatly boost the frequency of editing. While characterizing CRISPR-Cas systems, bacterial defense systems, and the source of CRISPR technologies, we discovered a new mechanism that could kill unedited cells yet spare edited cells, regardless of the type of gene edit.

Proposed Solution

This versatile and sequence-specific approach can be described as programmable counter-selection, as undesired cells are targeted for removal, and those cells can be targeted in a programmable way. If proven, this capability could radically boost the effective editing frequencies by removing unedited cells regardless of the underlying edit, providing much-needed relief to the burden of screening imposed on diverse genome-editing applications.

Experimental Approach

Here, we propose to perform proof-of-concept experiments demonstrating this capability in human cells while exploring which editing applications would best benefit from this capability.

Background and Expertise

The associated tasks build on my extensive work at the interface of CRISPR biology and technologies and leverage my numerous academic and industrial contacts.

Future Goals

I ultimately aim to translate a novel biological insight from my group’s ERC Consolidator project into an innovative foundational technology, with a clear path toward its broad use in genome editing.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-4-2024
Einddatum30-9-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBHpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Profile nucleases and Repurpose Off-Targets to Expand Gene Editing

The PROTÉGÉ project aims to enhance gene editing safety and diversity by profiling programmable nucleases and exploring off-target effects for improved precision in genetic therapies.

€ 1.141.779
ERC Consolid...

In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain Diseases

This project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively.

€ 2.249.895
ERC Advanced...

Repurposing of CAST Systems as Next-Generation Tools for Genome Engineering of Mammalian Cells

INTETOOLS aims to enhance genome engineering by repurposing CRISPR Associated Transposon systems for precise insertion of large DNA cargos in eukaryotic genomes, overcoming current limitations.

€ 2.475.491
ERC Consolid...

RNA-based gene writing in human cells

SCRIBE aims to develop innovative RNA-based gene writing strategies using CRISPR and retrotransposons to enhance gene transfer efficacy and safety for research and therapeutic applications.

€ 1.999.465
ERC Starting...

Transcriptional Engineering of Hematopoietic Stem Cells using CRISPR

This project aims to enhance hematopoietic stem cell therapies by using repurposed CRISPR/Cas systems for precise transcriptional manipulation of key genetic pathways.

€ 1.499.923

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

New Prime Editing and non-viral delivery strategies for Gene Therapy

This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.

€ 4.406.097
Mkb-innovati...

FluEdit: Microfluidics Gen-editing platform voor bloedcellen

NTrans Technologies ontwikkelt het Flu-Edit platform om efficiënt en veilig gen-editing therapieën voor bloedziekten te realiseren met behulp van microfluidics en iTOP technologie.

€ 20.000
EIC Pathfinder

NOn-VIral gene modified STEM cell therapy

This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.

€ 3.644.418
EIC Pathfinder

A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system

The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.

€ 2.988.377
EIC Accelerator

Next generation gene writing platform to cure genetic and oncological diseases

Integra Therapeutics' FiCAT platform enhances gene therapy by enabling precise and safe insertion of large DNA sequences, aiming to cure genetic and cancer-related diseases.

€ 2.496.375