Generation and validation of a panel of EMT reporter cell lines from solid tumors
Develop a validated toolkit of genetically modified cell lines and culture media to improve drug discovery by accurately representing solid tumor subtypes and their responses to treatment.
Projectdetails
Introduction
Cancer is a very heterogeneous disease, and its subtypes display great variability in their response to treatment. The high failure rate of anticancer drug discovery consumes billions of dollars annually, contributing to the high cost of those few drugs that are eventually approved.
Problem Statement
One of the problems lies in inaccurate and oversimplified cell line models for studying human tumors. Yet, a method to incorporate tumor subtype contribution in response to drugs is lacking.
Proposed Solution
To improve experimental oncology and drug discovery, we propose to develop a validated toolkit of ready-to-use cell lines and defined cell culture media in order to clearly and unambiguously represent well-conserved solid tumor subtypes.
Background
This approach is drawn from our ERC StG-funded project, in which we invented, validated, and patented a method to genetically label any cell type or cell state transition. Our idea is novel because it uses custom synthetic genetic reporters in in vitro tumor models, which enables tracing of tumor cell states.
Toolkit Components
The first component of the kit is a set of genetically modified cell lines representing tumors from different epithelial tissues and reporting on epithelial or mesenchymal states (work package 1; WP1).
Thereafter, we will use these cells to define the formulation of two additional components of the kit:
- The cell culture media
- The supplements to in vitro propagate and discriminate the two distinct cell states (WP2-WP3).
Product Comparison
In WP4, we will perform a product comparison by measuring the features of the toolkit cell lines in response to anti-cancer treatment as compared to current standards.
Industry Considerations
In parallel, WP5-WP6 will address industry-quality, IP strategy implementation, and freedom-to-operate.
Socioeconomic Impact
Given the socioeconomic impact of cancer and the lack of a similar technology, our solution has the potential to eliminate the high failure rate of anticancer drug discovery because it will make it possible to perform drug screens on different tumor cell states at once.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 31-12-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)penvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy. | ERC Proof of... | € 150.000 | 2024 | Details |
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunctionDevelop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment. | ERC Proof of... | € 150.000 | 2024 | Details |
Cell-instructive matrices to deconstruct tumour tissuesThe project aims to develop a controllable platform for patient-specific pancreatic cancer models to discover improved therapies targeting tumor biology and cell interactions. | ERC Proof of... | € 150.000 | 2024 | Details |
Deciphering Cancer Heterogeneity and Drug resistance using Single-Clone Genomic and Epigenomic LandscapesThis project aims to develop innovative single-cell technologies to analyze tumor subclones, enhancing understanding of drug resistance and identifying new therapeutic targets in brain cancers. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapiesThe TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies. | ERC Advanced... | € 2.500.000 | 2022 | Details |
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment
3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy.
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunction
Develop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment.
Cell-instructive matrices to deconstruct tumour tissues
The project aims to develop a controllable platform for patient-specific pancreatic cancer models to discover improved therapies targeting tumor biology and cell interactions.
Deciphering Cancer Heterogeneity and Drug resistance using Single-Clone Genomic and Epigenomic Landscapes
This project aims to develop innovative single-cell technologies to analyze tumor subclones, enhancing understanding of drug resistance and identifying new therapeutic targets in brain cancers.
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies
The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancyThe PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance. | EIC Pathfinder | € 2.982.792 | 2022 | Details |
PRO CellecTPan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Next-Generation Drug Discovery Platform for Targeting Cancer Stem Cell PathwaysDevelop a drug discovery platform using patient-derived organoids and machine learning to target stem cell signaling pathways in colorectal cancer, aiming to improve treatment outcomes. | EIC Transition | € 2.433.125 | 2022 | Details |
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentieDit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren. | Mkb-innovati... | € 200.000 | 2018 | Details |
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy
The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.
PRO CellecT
Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.
Next-Generation Drug Discovery Platform for Targeting Cancer Stem Cell Pathways
Develop a drug discovery platform using patient-derived organoids and machine learning to target stem cell signaling pathways in colorectal cancer, aiming to improve treatment outcomes.
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentie
Dit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren.