Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies

The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.

Subsidie
€ 2.500.000
2022

Projectdetails

Introduction

Single-cell genomic technologies have transformed many fields of research. We here seek to do just that in synthetic immunology and immunotherapy. At present, our understanding of the complex crosstalk within the tumor microenvironment (TME) is still piecemeal, as is our ability to effectively engineer the immune system to attack tumor cells in spite of the robust immune-suppression signaling of the tumor.

Current Challenges

Current immunotherapies are effective only in a small subset of tumor types and patients, emphasizing the dire need to better understand immune-suppressive mechanisms within the TME and develop new immunotherapy strategies.

Vision

What if we could develop technologies that reprogram the immune system to suit our therapeutic needs? In TROJAN-Cell, we will do so by first uncovering fundamental principles of the immune-tumor niche using advanced single-cell multiomics tools and modeling approaches.

Objectives

This will then serve to develop TROJAN-Cell—a novel synthetic immunology technology for engineering circuits capable of sensing inhibitory immune signals and generating a proportional self-regulated immune-activation response—thus using the tumor’s own pro-cancer signaling to eradicate it.

Obj.1: Dissecting Inhibitory Crosstalk

In Obj.1, we will dissect the principles of the inhibitory crosstalk and signaling in the TME of diverse human tumors using our single-cell technologies PIC-seq and INs-seq.

Obj.2: Developing Tumor Models

In Obj.2, we will screen and develop mice tumor models that recapitulate the human TME, which we will use to define the function of factors/circuits of interest.

Obj.3: Developing TROJAN-Cell

In Obj.3, we will develop TROJAN-Cell, a novel toolset for transforming tumor inhibitory signals into potent, highly specific anti-tumor immunity.

Conclusion

Our research will greatly expand our understanding of the immune-inhibitory crosstalk in the TME and give rise to novel immune engineering approaches and molecules, which may serve as the next generation of cancer immunotherapies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.500.000
Totale projectbegroting€ 2.500.000

Tijdlijn

Startdatum1-10-2022
Einddatum30-9-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • WEIZMANN INSTITUTE OF SCIENCEpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500
ERC Consolid...

Unlocking a T cell-mediated Immune response in therapy-challenged Tumors

UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.

€ 2.000.000
ERC Starting...

Elucidating the networks of immune stromal connections by Perturbation of Immunity in Cancer - towards developing novel therapeutic strategies

This project aims to map immune and stromal cell interactions in the tumor microenvironment to develop targeted therapies that enhance immunotherapy efficacy against cancer.

€ 1.500.000
ERC Proof of...

Developing the next generation of cis-targeting macrophage-T cell cancer immunotherapies

This project aims to develop dual-modulatory agents to enhance anti-tumor immune responses in cancer immunotherapy while minimizing side effects, seeking proof-of-concept validation.

€ 150.000
ERC Starting...

Decoding Requirements for Infiltration of T ceLLs into solid tumors

This project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy.

€ 1.521.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
EIC Transition

Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming

The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.

€ 2.480.367
EIC Accelerator

Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineering

The project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer.

€ 2.434.790
EIC Transition

RESTORING IMMUNITY CONTROL OF GI CANCERS

TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.

€ 2.007.750