Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment
3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy.
Projectdetails
Introduction
Cancer and tumours are exceptionally heterogeneous in tissue and cellular composition, clinical stage, and mutational status. Additionally, the presence of multiple cancers or metastatic tumours in patients leads to complicated drug regimens resulting in high off-target toxicity, unexpected drug resistance, and difficulties in understanding the therapeutic effects.
Current Challenges
Despite a global investment in oncological drug development reaching 5 billion USD, less than 5% of all oncological drugs in the pipeline enter the therapy toolbox. Given the huge burden that cancer poses at all levels in society, being the leading cause of mortality worldwide and expected to reach 20 million deaths by 2050, technologies that enable pharmaceutical companies to increase the efficiency of drug development may alleviate the threat imposed on the more than 50 million people currently living with cancer.
Technological Solutions
Such technologies include pre-clinical models that represent the tumour microenvironment and reveal the effect of drug candidates in laboratory tumour replicas. To provide clinically relevant information, such models must be:
- Patient-specific
- Representative of the specificity of the target tissue
- Reflective of the cell heterogeneity of the tumour microenvironment
In addition, to be industrially relevant, they must be implementable, reproducible, and high throughput. Commercially available solutions do not meet these requirements.
3DTUMOUR Technology
3DTUMOUR provides a proprietary technology to produce multiple 3D bioprinted replicas of patient-derived tumour models that faithfully represent the therapeutic target for a drug candidate.
Project Goals
3DTUMOUR aims at increasing the drug development success rate by transferring this pharmaceutical testing platform to industry. The successful outcome of this proof of concept (PoC) will provide clinicians with a tool to test the efficacy of drugs ex vivo, accelerating the onset of efficient treatments and reducing off-target toxicity and unexpected drug resistance by applying a personalized medicine approach.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-7-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MicroScale system integrating Patient-specific cancer Organoids in a 3D Tumor microenvironment for Therapy rEsponse preDictionSPOTTED develops patient-derived 3D models of pancreatic cancer using microfluidics to enhance personalized therapy through precise drug screening and real-time analysis. | ERC Proof of... | € 150.000 | 2025 | Details |
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug PenetrationThis project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes. | ERC Starting... | € 1.499.693 | 2024 | Details |
High-throughput combinatory drugs testing on in vitro 3D cells model platformThe project aims to develop a microfluidic platform for high-throughput screening of drug combinations in 3D cultures to enhance drug discovery and identify synergistic therapies for breast cancer. | ERC Proof of... | € 150.000 | 2023 | Details |
Capturing tumoral drug metabolism by Cells In the Tissue Environment using spatial pharmacometabolomicsThe CITE project aims to develop innovative analytical technologies to study intratumoral drug metabolism in pancreatic cancer, enhancing understanding of treatment resistance mechanisms. | ERC Starting... | € 2.481.640 | 2024 | Details |
Nano-assisted digitalizing of cancer phenotyping for immunotherapyThe ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes. | ERC Consolid... | € 1.993.875 | 2023 | Details |
MicroScale system integrating Patient-specific cancer Organoids in a 3D Tumor microenvironment for Therapy rEsponse preDiction
SPOTTED develops patient-derived 3D models of pancreatic cancer using microfluidics to enhance personalized therapy through precise drug screening and real-time analysis.
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration
This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.
High-throughput combinatory drugs testing on in vitro 3D cells model platform
The project aims to develop a microfluidic platform for high-throughput screening of drug combinations in 3D cultures to enhance drug discovery and identify synergistic therapies for breast cancer.
Capturing tumoral drug metabolism by Cells In the Tissue Environment using spatial pharmacometabolomics
The CITE project aims to develop innovative analytical technologies to study intratumoral drug metabolism in pancreatic cancer, enhancing understanding of treatment resistance mechanisms.
Nano-assisted digitalizing of cancer phenotyping for immunotherapy
The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug developmentCherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing. | EIC Accelerator | € 2.499.831 | 2024 | Details |
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancyThe PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance. | EIC Pathfinder | € 2.982.792 | 2022 | Details |
RESTORING IMMUNITY CONTROL OF GI CANCERSTIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization. | EIC Transition | € 2.007.750 | 2025 | Details |
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineeringThe project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer. | EIC Accelerator | € 2.434.790 | 2025 | Details |
PRO CellecTPan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug development
Cherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing.
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy
The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.
RESTORING IMMUNITY CONTROL OF GI CANCERS
TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineering
The project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer.
PRO CellecT
Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.